You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

157 lines
5.9 KiB
Go

/*
Package regex implements regular expression search, using a custom non-bracktracking engine with support for lookarounds and numeric ranges.
The engine relies completely on UTF-8 codepoints. As such, it is capable of matching characters
from other languages, emojis and symbols.
The full syntax is specified below.
# Syntax
Single characters:
. Match any character. Newline matching is dependent on the RE_SINGLE_LINE flag.
[abc] Character class - match a, b or c
[a-z] Character range - match any character from a to z
[^abc] Negated character class - match any character except a, b and c
[^a-z] Negated character range - do not match any character from a to z
\[ Match a literal '['. Backslashes can escape any character with special meaning, including another backslash.
\452 Match the character with the octal value 452 (up to 3 digits)
\xFF Match the character with the hex value FF (exactly 2 characters)
\x{0000FF} Match the character with the hex value 0000FF (exactly 6 characters)
\n Newline
\a Bell character
\f Form-feed character
\r Carriage return
\t Horizontal tab
\v Vertical tab
Perl classes:
\d Match any digit character ([0-9])
\D Match any non-digit character ([^0-9])
\w Match any word character ([a-zA-Z0-9_])
\W Match any word character ([^a-zA-Z0-9_])
\s Match any whitespace character ([ \t\n])
\S Match any non-whitespace character ([^ \t\n])
POSIX classes (inside normal character classes):
[:digit:] All digit characters ([0-9])
[:upper:] All upper-case letters ([A-Z])
[:lower:] All lower-case letters ([a-z])
[:alpha:] All letters ([a-zA-Z])
[:alnum:] All alphanumeric characters ([a-zA-Z0-9])
[:xdigit:] All hexadecimal characters ([a-fA-F0-9])
[:blank:] All blank characters ([ \t])
[:space:] All whitespace characters ([ \t\n\r\f\v])
[:cntrl:] All control characters ([\x00-\x1F\x7F])
[:punct:] All punctuation characters
[:graph:] All graphical characters ([\x21-\x7E])
[:print:] All graphical characters + space ([\x20-\x7E])
[:word:] All word characters (\w)
[:ascii:] All ASCII values ([\x00-\x7F])
Composition:
def Match d, followed by e, followed by f
x|y Match x or y (prefer longer one)
xy|z Match xy or z
Repitition (always greedy, preferring more):
x* Match x zero or more times
x+ Match x one or more times
x? Match x zero or one time
x{m,n} Match x between m and n times (inclusive)
x{m,} Match x atleast m times
x{,n} Match x between 0 and n times (inclusive)
x{m} Match x exactly m times
Grouping:
(expr) Create a capturing group. The contents of the group can be retrieved with [FindAllMatches]
x(y|z) Match x followed by y or z. Given a successful match, the contents of group 1 will include either y or z
(?:expr) Create a non-capturing group. The contents of the group aren't saved.
x(?:y|z) Match x followed by y or z. No groups are created.
Assertions:
^ Match at the start of the input string. If RE_MULTILINE is enabled, it also matches at the start of every line.
$ Match at the end of the input string. If RE_MULTILINE is enabled, it also matches at the end of every line.
\A Always match at the start of the string, regardless of RE_MULTILINE
\z Always match at the end of the string, regardless of RE_MULTILINE
\b Match at a word boundary (a word character followed by a non-word character, or vice-versa)
\B Match at a non-word boundary (a word character followed by a word character, or vice-versa)
Lookarounds:
x(?=y) Positive lookahead - Match x if followed by y
x(?!y) Negative lookahead - Match x if NOT followed by y
(?<=x)y Positive lookbehind - Match y if preceded by x
(?<!x)y Negative lookbehind - Match y if NOT preceded by x
Numeric ranges:
<x-y> Match any number from x to y (inclusive) (x and y must be positive numbers)
# Key Differences with regexp
The engine and the API differ from [regexp] in a number of ways, some of them very subtle.
The key differences are mentioned below.
1. Greediness:
This engine does not support non-greedy operators. All operators are always greedy in nature, and will try
to match as much as they can, while still allowing for a successful match. For example, given the regex:
y*y
The engine will match as many 'y's as it can, while still allowing the trailing 'y' to be matched.
Another, more subtle example is the following regex:
x|xx
While the stdlib implementation (and most other engines) will prefer matching the first item of the alternation,
this engine will _always_ go for the longest possible match, regardless of the order of the alternation.
2. Byte-slices and runes:
My engine does not support byte-slices. When a matching function receives a string, it converts it into a
rune-slice to iterate through it. While this has some space overhead, the convenience of built-in unicode
support made the tradeoff worth it.
3. Return values
Rather than using primitives for return values, my engine defines two types that are used as return
values: a [Group] represents a capturing group, and a [Match] represents a list of groups.
[regexp] specifies a regular expression that gives a list of all the matching functions that it supports. The
equivalent expression for this engine is:
Find(All)?(String)?(Submatch)?
[Reg.Find] returns the index of the leftmost match in the string.
If a function contains 'All' it returns all matches instead of just the leftmost one.
If a function contains 'String' it returns the matched text, rather than the indices.
If a function contains 'Submatch' it returns the match, including all submatches found by
capturing groups.
The term '0-group' is used to refer to the 0th capturing group of a match (which is the entire match).
Given the following regex:
x(y)
and the input string:
xyz
The 0th group would contain 'xy' and the 1st group would contain 'y'. Any matching function without 'Submatch' in its name
returns the 0-group.
*/
package regex