Started rewrite of matching algorithm, got concatenation and alternation done, kleene and zero-state stuff is next
This commit is contained in:
@@ -1,7 +1,6 @@
|
||||
package regex
|
||||
|
||||
import (
|
||||
"container/heap"
|
||||
"fmt"
|
||||
"slices"
|
||||
"sort"
|
||||
@@ -267,16 +266,15 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
|
||||
// chosen as the match for the entire string.
|
||||
// This allows us to pick the longest possible match (which is how greedy matching works).
|
||||
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
|
||||
tempIndices := newMatch(numGroups + 1)
|
||||
// tempIndices := newMatch(numGroups + 1)
|
||||
|
||||
foundPath := false
|
||||
startIdx := offset
|
||||
endIdx := offset
|
||||
currentStates := &priorityQueue{}
|
||||
heap.Init(currentStates)
|
||||
tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
|
||||
i := offset // Index in string
|
||||
startingFrom := i // Store starting index
|
||||
// foundPath := false
|
||||
//startIdx := offset
|
||||
//endIdx := offset
|
||||
currentStates := make([]*nfaState, 0)
|
||||
// tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
|
||||
i := offset // Index in string
|
||||
//startingFrom := i // Store starting index
|
||||
|
||||
// If the first state is an assertion, makes sure the assertion
|
||||
// is true before we do _anything_ else.
|
||||
@@ -287,214 +285,266 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
|
||||
}
|
||||
}
|
||||
// Increment until we hit a character matching the start state (assuming not 0-state)
|
||||
if start.isEmpty == false {
|
||||
for i < len(str) && !start.contentContains(str, i) {
|
||||
i++
|
||||
}
|
||||
startIdx = i
|
||||
startingFrom = i
|
||||
i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
||||
}
|
||||
// if start.isEmpty == false {
|
||||
// for i < len(str) && !start.contentContains(str, i) {
|
||||
// i++
|
||||
// }
|
||||
// startIdx = i
|
||||
// startingFrom = i
|
||||
// i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
||||
// }
|
||||
|
||||
start.threadGroups = newMatch(numGroups + 1)
|
||||
// start.threadGroups = newMatch(numGroups + 1)
|
||||
// Check if the start state begins a group - if so, add the start index to our list
|
||||
if start.groupBegin {
|
||||
start.threadGroups[start.groupNum].StartIdx = i
|
||||
// tempIndices[start.groupNum].startIdx = i
|
||||
}
|
||||
//if start.groupBegin {
|
||||
// start.threadGroups[start.groupNum].StartIdx = i
|
||||
// tempIndices[start.groupNum].startIdx = i
|
||||
//}
|
||||
|
||||
start.threadSP = i
|
||||
heap.Push(currentStates, newPriorQueueItem(start))
|
||||
currentStates = append(currentStates, start)
|
||||
var foundMatch bool
|
||||
// Main loop
|
||||
for currentStates.Len() > 0 {
|
||||
currentState := heap.Pop(currentStates)
|
||||
foundPath = false
|
||||
for len(currentStates) > 0 {
|
||||
currentState, _ := pop(¤tStates)
|
||||
idx := currentState.threadSP
|
||||
foundMatch = false
|
||||
|
||||
zeroStates := make([]*nfaState, 0)
|
||||
// Keep taking zero-states, until there are no more left to take
|
||||
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
||||
topStateItem := currentStates.peek()
|
||||
topState := topStateItem.(*priorQueueItem).state
|
||||
zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||
tempStates = append(tempStates, zeroStates...)
|
||||
num_appended := 0
|
||||
for isZero == true {
|
||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
break
|
||||
}
|
||||
if currentState.threadGroups == nil {
|
||||
currentState.threadGroups = newMatch(numGroups + 1)
|
||||
currentState.threadGroups[0].StartIdx = idx
|
||||
}
|
||||
if isZero == true {
|
||||
currentStates.Pop()
|
||||
}
|
||||
|
||||
for _, state := range tempStates {
|
||||
heap.Push(currentStates, newPriorQueueItem(state))
|
||||
}
|
||||
tempStates = nil
|
||||
|
||||
// Take any transitions corresponding to current character
|
||||
numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
||||
assertionFailed := false // Whether or not an assertion failed for this round
|
||||
lastStateInList := false // Whether or not a last state was in our list of states
|
||||
var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
|
||||
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
|
||||
for numStatesMatched == 0 && lastStateInList == false {
|
||||
if currentStates.Len() == 0 {
|
||||
break
|
||||
if currentState.groupBegin {
|
||||
currentState.threadGroups[currentState.groupNum].StartIdx = idx
|
||||
} else if currentState.groupEnd {
|
||||
currentState.threadGroups[currentState.groupNum].EndIdx = idx
|
||||
} else if currentState.isKleene {
|
||||
// Append the
|
||||
} else if currentState.isAlternation {
|
||||
rightState := currentState.rightState
|
||||
rightState.threadGroups = currentState.threadGroups
|
||||
rightState.threadSP = currentState.threadSP
|
||||
currentStates = append(currentStates, currentState.rightState)
|
||||
leftState := currentState.leftState
|
||||
leftState.threadGroups = currentState.threadGroups
|
||||
leftState.threadSP = currentState.threadSP
|
||||
currentStates = append(currentStates, currentState.leftState)
|
||||
continue
|
||||
} else if currentState.contentContains(str, idx) {
|
||||
foundMatch = true
|
||||
allMatches := make([]*nfaState, 0)
|
||||
for _, v := range currentState.transitions {
|
||||
allMatches = append(allMatches, v...)
|
||||
}
|
||||
stateItem := heap.Pop(currentStates)
|
||||
state := stateItem.(*priorQueueItem).state
|
||||
matches, numMatches := state.matchesFor(str, i)
|
||||
if numMatches > 0 {
|
||||
numStatesMatched++
|
||||
tempStates = append([]*nfaState(nil), matches...)
|
||||
foundPath = true
|
||||
for _, m := range matches {
|
||||
if m.threadGroups == nil {
|
||||
m.threadGroups = newMatch(numGroups + 1)
|
||||
}
|
||||
m.threadSP = state.threadSP + 1
|
||||
copy(m.threadGroups, state.threadGroups)
|
||||
}
|
||||
}
|
||||
if numMatches < 0 {
|
||||
assertionFailed = true
|
||||
}
|
||||
if state.isLast {
|
||||
if state.isLookaround() {
|
||||
lastLookaroundInList = true
|
||||
}
|
||||
lastStateInList = true
|
||||
lastStatePtr = state
|
||||
}
|
||||
}
|
||||
|
||||
if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
||||
// If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
|
||||
// state. The explanation below is my attempt to explain this behavior.
|
||||
// If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
|
||||
//
|
||||
// One of the states in our list was a last state and a lookaround. In this case, we
|
||||
// don't abort upon failure of the assertion, because we have found
|
||||
// another path to a final state.
|
||||
// Even if the last state _was_ an assertion, we can use the previously
|
||||
// saved indices to find a match.
|
||||
if lastLookaroundInList {
|
||||
break
|
||||
} else {
|
||||
if i == startingFrom {
|
||||
i++
|
||||
}
|
||||
return false, []Group{}, i
|
||||
}
|
||||
}
|
||||
// Check if we can find a state in our list that is:
|
||||
// a. A last-state
|
||||
// b. Empty
|
||||
// c. Doesn't assert anything
|
||||
for _, stateItem := range *currentStates {
|
||||
s := stateItem.state
|
||||
if s.isLast && s.isEmpty && s.assert == noneAssert {
|
||||
lastStatePtr = s
|
||||
lastStateInList = true
|
||||
}
|
||||
}
|
||||
if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
||||
for j := 1; j < numGroups+1; j++ {
|
||||
tempIndices[j] = lastStatePtr.threadGroups[j]
|
||||
}
|
||||
endIdx = i
|
||||
tempIndices[0] = Group{startIdx, endIdx}
|
||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
|
||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
} else {
|
||||
return true, tempIndices, tempIndices[0].EndIdx
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we can find a zero-length match
|
||||
if foundPath == false {
|
||||
currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
|
||||
return item.state
|
||||
})
|
||||
if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
|
||||
if tempIndices[0].IsValid() == false {
|
||||
tempIndices[0] = Group{startIdx, startIdx}
|
||||
}
|
||||
}
|
||||
// If we haven't moved in the string, increment the counter by 1
|
||||
// to ensure we don't keep trying the same string over and over.
|
||||
// if i == startingFrom {
|
||||
startIdx++
|
||||
// i++
|
||||
// }
|
||||
if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
|
||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
slices.Reverse(allMatches)
|
||||
for _, m := range allMatches {
|
||||
m.threadGroups = currentState.threadGroups
|
||||
if currentState.assert == noneAssert {
|
||||
m.threadSP = idx + 1
|
||||
} else {
|
||||
return true, tempIndices, tempIndices[0].EndIdx
|
||||
m.threadSP = idx
|
||||
}
|
||||
}
|
||||
return false, []Group{}, startIdx
|
||||
currentStates = append(currentStates, allMatches...)
|
||||
}
|
||||
currentStates = &priorityQueue{}
|
||||
slices.Reverse(tempStates)
|
||||
for _, state := range tempStates {
|
||||
heap.Push(currentStates, newPriorQueueItem(state))
|
||||
}
|
||||
tempStates = nil
|
||||
|
||||
i++
|
||||
}
|
||||
if currentState.isLast && foundMatch { // Last state reached
|
||||
currentState.threadGroups[0].EndIdx = idx + 1
|
||||
return true, currentState.threadGroups, idx + 1
|
||||
|
||||
// End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
||||
// This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
||||
if currentStates.Len() > 0 {
|
||||
topStateItem := currentStates.peek()
|
||||
topState := topStateItem.(*priorQueueItem).state
|
||||
zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||
tempStates = append(tempStates, zeroStates...)
|
||||
num_appended := 0 // Number of unique states addded to tempStates
|
||||
for isZero == true {
|
||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for _, state := range tempStates {
|
||||
heap.Push(currentStates, newPriorQueueItem(state))
|
||||
}
|
||||
tempStates = nil
|
||||
|
||||
for _, stateItem := range *currentStates {
|
||||
state := stateItem.state
|
||||
// Only add the match if the start index is in bounds. If the state has an assertion,
|
||||
// make sure the assertion checks out.
|
||||
if state.isLast && i <= len(str) {
|
||||
if state.assert == noneAssert || state.checkAssertion(str, i) {
|
||||
for j := 1; j < numGroups+1; j++ {
|
||||
tempIndices[j] = state.threadGroups[j]
|
||||
}
|
||||
endIdx = i
|
||||
tempIndices[0] = Group{startIdx, endIdx}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if tempIndices.numValidGroups() > 0 {
|
||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
} else {
|
||||
return true, tempIndices, tempIndices[0].EndIdx
|
||||
}
|
||||
}
|
||||
if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
||||
startIdx++
|
||||
}
|
||||
return false, []Group{}, startIdx
|
||||
return false, []Group{}, i + 1
|
||||
// zeroStates := make([]*nfaState, 0)
|
||||
// // Keep taking zero-states, until there are no more left to take
|
||||
// // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
||||
// topStateItem := currentStates.peek()
|
||||
// topState := topStateItem.(*priorQueueItem).state
|
||||
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||
// tempStates = append(tempStates, zeroStates...)
|
||||
// num_appended := 0
|
||||
// for isZero == true {
|
||||
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||
// if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
// break
|
||||
// }
|
||||
// }
|
||||
// if isZero == true {
|
||||
// currentStates.Pop()
|
||||
// }
|
||||
//
|
||||
// for _, state := range tempStates {
|
||||
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||
// }
|
||||
// tempStates = nil
|
||||
//
|
||||
// // Take any transitions corresponding to current character
|
||||
// numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
||||
// assertionFailed := false // Whether or not an assertion failed for this round
|
||||
// lastStateInList := false // Whether or not a last state was in our list of states
|
||||
// var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
|
||||
// lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
|
||||
// for numStatesMatched == 0 && lastStateInList == false {
|
||||
// if currentStates.Len() == 0 {
|
||||
// break
|
||||
// }
|
||||
// stateItem := heap.Pop(currentStates)
|
||||
// state := stateItem.(*priorQueueItem).state
|
||||
// matches, numMatches := state.matchesFor(str, i)
|
||||
// if numMatches > 0 {
|
||||
// numStatesMatched++
|
||||
// tempStates = append([]*nfaState(nil), matches...)
|
||||
// foundPath = true
|
||||
// for _, m := range matches {
|
||||
// if m.threadGroups == nil {
|
||||
// m.threadGroups = newMatch(numGroups + 1)
|
||||
// }
|
||||
// m.threadSP = state.threadSP + 1
|
||||
// copy(m.threadGroups, state.threadGroups)
|
||||
// }
|
||||
// }
|
||||
// if numMatches < 0 {
|
||||
// assertionFailed = true
|
||||
// }
|
||||
// if state.isLast {
|
||||
// if state.isLookaround() {
|
||||
// lastLookaroundInList = true
|
||||
// }
|
||||
// lastStateInList = true
|
||||
// lastStatePtr = state
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
||||
// // If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
|
||||
// // state. The explanation below is my attempt to explain this behavior.
|
||||
// // If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
|
||||
// //
|
||||
// // One of the states in our list was a last state and a lookaround. In this case, we
|
||||
// // don't abort upon failure of the assertion, because we have found
|
||||
// // another path to a final state.
|
||||
// // Even if the last state _was_ an assertion, we can use the previously
|
||||
// // saved indices to find a match.
|
||||
// if lastLookaroundInList {
|
||||
// break
|
||||
// } else {
|
||||
// if i == startingFrom {
|
||||
// i++
|
||||
// }
|
||||
// return false, []Group{}, i
|
||||
// }
|
||||
// }
|
||||
// // Check if we can find a state in our list that is:
|
||||
// // a. A last-state
|
||||
// // b. Empty
|
||||
// // c. Doesn't assert anything
|
||||
// for _, stateItem := range *currentStates {
|
||||
// s := stateItem.state
|
||||
// if s.isLast && s.isEmpty && s.assert == noneAssert {
|
||||
// lastStatePtr = s
|
||||
// lastStateInList = true
|
||||
// }
|
||||
// }
|
||||
// if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
||||
// for j := 1; j < numGroups+1; j++ {
|
||||
// tempIndices[j] = lastStatePtr.threadGroups[j]
|
||||
// }
|
||||
// endIdx = i
|
||||
// tempIndices[0] = Group{startIdx, endIdx}
|
||||
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
|
||||
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
// } else {
|
||||
// return true, tempIndices, tempIndices[0].EndIdx
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Check if we can find a zero-length match
|
||||
// if foundPath == false {
|
||||
// currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
|
||||
// return item.state
|
||||
// })
|
||||
// if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
|
||||
// if tempIndices[0].IsValid() == false {
|
||||
// tempIndices[0] = Group{startIdx, startIdx}
|
||||
// }
|
||||
// }
|
||||
// // If we haven't moved in the string, increment the counter by 1
|
||||
// // to ensure we don't keep trying the same string over and over.
|
||||
// // if i == startingFrom {
|
||||
// startIdx++
|
||||
// // i++
|
||||
// // }
|
||||
// if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
|
||||
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
// } else {
|
||||
// return true, tempIndices, tempIndices[0].EndIdx
|
||||
// }
|
||||
// }
|
||||
// return false, []Group{}, startIdx
|
||||
// }
|
||||
// currentStates = &priorityQueue{}
|
||||
// slices.Reverse(tempStates)
|
||||
// for _, state := range tempStates {
|
||||
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||
// }
|
||||
// tempStates = nil
|
||||
//
|
||||
// i++
|
||||
// }
|
||||
//
|
||||
// // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
||||
// // This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
||||
//
|
||||
// if currentStates.Len() > 0 {
|
||||
// topStateItem := currentStates.peek()
|
||||
// topState := topStateItem.(*priorQueueItem).state
|
||||
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||
// tempStates = append(tempStates, zeroStates...)
|
||||
// num_appended := 0 // Number of unique states addded to tempStates
|
||||
// for isZero == true {
|
||||
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||
// if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
// break
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// for _, state := range tempStates {
|
||||
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||
// }
|
||||
//
|
||||
// tempStates = nil
|
||||
//
|
||||
// for _, stateItem := range *currentStates {
|
||||
// state := stateItem.state
|
||||
// // Only add the match if the start index is in bounds. If the state has an assertion,
|
||||
// // make sure the assertion checks out.
|
||||
// if state.isLast && i <= len(str) {
|
||||
// if state.assert == noneAssert || state.checkAssertion(str, i) {
|
||||
// for j := 1; j < numGroups+1; j++ {
|
||||
// tempIndices[j] = state.threadGroups[j]
|
||||
// }
|
||||
// endIdx = i
|
||||
// tempIndices[0] = Group{startIdx, endIdx}
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// if tempIndices.numValidGroups() > 0 {
|
||||
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
// } else {
|
||||
// return true, tempIndices, tempIndices[0].EndIdx
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
||||
//
|
||||
// startIdx++
|
||||
// }
|
||||
//
|
||||
// return false, []Group{}, startIdx
|
||||
}
|
||||
|
Reference in New Issue
Block a user