Renamed 'state' to 'nfaState' because 'state' by itself means nothing

master
Aadhavan Srinivasan 3 days ago
parent d81b2ddaaa
commit 93474c5159

@ -14,7 +14,7 @@ var notDotChars []rune
// the startState of the NFA representation of the regex, and the number of capturing
// groups in the regex.
type Reg struct {
start *State
start *nfaState
numGroups int
}
@ -799,8 +799,8 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
// Returns start state and number of groups in regex.
func thompson(re []postfixNode) (Reg, error) {
nfa := make([]*State, 0) // Stack of states
numGroups := 0 // Number of capturing groups
nfa := make([]*nfaState, 0) // Stack of states
numGroups := 0 // Number of capturing groups
// If thompson() receives an empty regex, then whatever was given to shuntingYard()
// was parsed away. This doesn't mean that the regex itself is empty.
@ -815,8 +815,8 @@ func thompson(re []postfixNode) (Reg, error) {
for _, c := range re {
if c.nodetype == characterNode || c.nodetype == assertionNode {
stateToAdd := State{}
stateToAdd.transitions = make(map[int][]*State)
stateToAdd := nfaState{}
stateToAdd.transitions = make(map[int][]*nfaState)
if c.allChars {
stateToAdd.allChars = true
if len(c.except) != 0 {
@ -862,7 +862,7 @@ func thompson(re []postfixNode) (Reg, error) {
})...)
}
stateToAdd.content = stateContents(append([]int(stateToAdd.content), []int(rune2Contents(runesToAdd))...))
stateToAdd.output = make([]*State, 0)
stateToAdd.output = make([]*nfaState, 0)
stateToAdd.output = append(stateToAdd.output, &stateToAdd)
stateToAdd.isEmpty = false
if c.nodetype == assertionNode {
@ -918,13 +918,13 @@ func thompson(re []postfixNode) (Reg, error) {
nfa = append(nfa, &stateToAdd)
}
if c.nodetype == lparenNode || c.nodetype == rparenNode {
s := &State{}
s := &nfaState{}
s.assert = noneAssert
s.content = newContents(EPSILON)
s.isEmpty = true
s.output = make([]*State, 0)
s.output = make([]*nfaState, 0)
s.output = append(s.output, s)
s.transitions = make(map[int][]*State)
s.transitions = make(map[int][]*nfaState)
// LPAREN nodes are just added normally
if c.nodetype == lparenNode {
numGroups++
@ -971,7 +971,7 @@ func thompson(re []postfixNode) (Reg, error) {
}
if c.nodetype == charclassNode { // A Character class consists of all the nodes in it, alternated
// Map the list of nodes to a list of states, each state containing the contents of a specific node
states := funcMap(c.nodeContents, func(node postfixNode) *State {
states := funcMap(c.nodeContents, func(node postfixNode) *nfaState {
s := newState()
nodeContents := node.contents
if caseInsensitive {
@ -989,7 +989,7 @@ func thompson(re []postfixNode) (Reg, error) {
return &s
})
// Reduce the list of states down to a single state by alternating them
toAdd := funcReduce(states, func(s1 *State, s2 *State) *State {
toAdd := funcReduce(states, func(s1 *nfaState, s2 *nfaState) *nfaState {
return alternate(s1, s2)
})
nfa = append(nfa, toAdd)
@ -1066,7 +1066,7 @@ func thompson(re []postfixNode) (Reg, error) {
return Reg{}, fmt.Errorf("numeric specifier - start greater than end")
}
poppedState := mustPop(&nfa)
var stateToAdd *State = nil
var stateToAdd *nfaState = nil
// Take advantage of the following facts:
// a{5} == aaaaa
// a{3,5} == aaaa?a?

@ -61,7 +61,7 @@ func (g Group) isValid() bool {
// given slice. It returns the resulting states. If any of the resulting states is a 0-state,
// the second ret val is true.
// If a state begins or ends a capturing group, its 'thread' is updated to contain the correct index.
func takeZeroState(states []*State, numGroups int, idx int) (rtv []*State, isZero bool) {
func takeZeroState(states []*nfaState, numGroups int, idx int) (rtv []*nfaState, isZero bool) {
for _, state := range states {
if len(state.transitions[EPSILON]) > 0 {
for _, s := range state.transitions[EPSILON] {
@ -93,9 +93,9 @@ func takeZeroState(states []*State, numGroups int, idx int) (rtv []*State, isZer
// from any of the given states, given the string and our position in it.
// It uses the same algorithm to find zero-states as the one inside the loop,
// so I should probably put it in a function.
func zeroMatchPossible(str []rune, idx int, numGroups int, states ...*State) bool {
func zeroMatchPossible(str []rune, idx int, numGroups int, states ...*nfaState) bool {
zeroStates, isZero := takeZeroState(states, numGroups, idx)
tempstates := make([]*State, 0, len(zeroStates)+len(states))
tempstates := make([]*nfaState, 0, len(zeroStates)+len(states))
tempstates = append(tempstates, states...)
tempstates = append(tempstates, zeroStates...)
num_appended := 0 // number of unique states addded to tempstates
@ -204,7 +204,7 @@ func FindAllMatches(regex Reg, str string) []Match {
// the next search should start from.
//
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (bool, Match, int) {
func findAllMatchesHelper(start *nfaState, str []rune, offset int, numGroups int) (bool, Match, int) {
// Base case - exit if offset exceeds string's length
if offset > len(str) {
// The second value here shouldn't be used, because we should exit when the third return value is > than len(str)
@ -221,10 +221,10 @@ func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (
foundPath := false
startIdx := offset
endIdx := offset
currentStates := make([]*State, 0)
tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration
i := offset // Index in string
startingFrom := i // Store starting index
currentStates := make([]*nfaState, 0)
tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
i := offset // Index in string
startingFrom := i // Store starting index
// If the first state is an assertion, makes sure the assertion
// is true before we do _anything_ else.
@ -257,7 +257,7 @@ func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (
for i < len(str) {
foundPath = false
zeroStates := make([]*State, 0)
zeroStates := make([]*nfaState, 0)
// Keep taking zero-states, until there are no more left to take
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
zeroStates, isZero := takeZeroState(currentStates, numGroups, i)
@ -275,11 +275,11 @@ func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (
tempStates = nil
// Take any transitions corresponding to current character
numStatesMatched := 0 // The number of states which had at least 1 match for this round
assertionFailed := false // Whether or not an assertion failed for this round
lastStateInList := false // Whether or not a last state was in our list of states
var lastStatePtr *State = nil // Pointer to the last-state, if it was found
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
numStatesMatched := 0 // The number of states which had at least 1 match for this round
assertionFailed := false // Whether or not an assertion failed for this round
lastStateInList := false // Whether or not a last state was in our list of states
var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
for _, state := range currentStates {
matches, numMatches := state.matchesFor(str, i)
if numMatches > 0 {
@ -364,7 +364,7 @@ func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (
}
return false, []Group{}, startIdx
}
currentStates = make([]*State, len(tempStates))
currentStates = make([]*nfaState, len(tempStates))
copy(currentStates, tempStates)
tempStates = nil

@ -22,36 +22,36 @@ const (
alwaysTrueAssert // An assertion that is always true
)
type state struct {
content stateContents // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output []*state // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
transitions map[int][]*state // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
lookaroundNFA *state // Holds the NFA of the lookaroundRegex - if it exists
lookaroundNumCaptureGroups int // Number of capturing groups in lookaround regex if current node is a lookaround
groupBegin bool // Whether or not the node starts a capturing group
groupEnd bool // Whether or not the node ends a capturing group
groupNum int // Which capturing group the node starts / ends
type nfaState struct {
content stateContents // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output []*nfaState // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
transitions map[int][]*nfaState // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
lookaroundNFA *nfaState // Holds the NFA of the lookaroundRegex - if it exists
lookaroundNumCaptureGroups int // Number of capturing groups in lookaround regex if current node is a lookaround
groupBegin bool // Whether or not the node starts a capturing group
groupEnd bool // Whether or not the node ends a capturing group
groupNum int // Which capturing group the node starts / ends
// The following properties depend on the current match - I should think about resetting them for every match.
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
threadGroups []Group // Assuming that a state is part of a 'thread' in the matching process, this array stores the indices of capturing groups in the current thread. As matches are found for this state, its groups will be copied over.
}
// Clones the NFA starting from the given state.
func cloneState(start *state) *state {
return cloneStateHelper(start, make(map[*state]*state))
func cloneState(start *nfaState) *nfaState {
return cloneStateHelper(start, make(map[*nfaState]*nfaState))
}
// Helper function for clone. The map is used to keep track of which states have
// already been copied, and which ones haven't.
// This function was created using output from Llama3.1:405B.
func cloneStateHelper(stateToClone *state, cloneMap map[*state]*state) *state {
func cloneStateHelper(stateToClone *nfaState, cloneMap map[*nfaState]*nfaState) *nfaState {
// Base case - if the clone exists in our map, return it.
if clone, exists := cloneMap[stateToClone]; exists {
return clone
@ -61,12 +61,12 @@ func cloneStateHelper(stateToClone *state, cloneMap map[*state]*state) *state {
}
// Recursive case - if the clone doesn't exist, create it, add it to the map,
// and recursively call for each of the transition states.
clone := &state{
clone := &nfaState{
content: append([]int{}, stateToClone.content...),
isEmpty: stateToClone.isEmpty,
isLast: stateToClone.isLast,
output: make([]*state, len(stateToClone.output)),
transitions: make(map[int][]*state),
output: make([]*nfaState, len(stateToClone.output)),
transitions: make(map[int][]*nfaState),
isKleene: stateToClone.isKleene,
assert: stateToClone.assert,
zeroMatchFound: stateToClone.zeroMatchFound,
@ -86,7 +86,7 @@ func cloneStateHelper(stateToClone *state, cloneMap map[*state]*state) *state {
}
}
for k, v := range stateToClone.transitions {
clone.transitions[k] = make([]*state, len(v))
clone.transitions[k] = make([]*nfaState, len(v))
for i, s := range v {
if s == stateToClone {
clone.transitions[k][i] = clone
@ -104,7 +104,7 @@ func cloneStateHelper(stateToClone *state, cloneMap map[*state]*state) *state {
// Checks if the given state's assertion is true. Returns true if the given
// state doesn't have an assertion.
func (s state) checkAssertion(str []rune, idx int) bool {
func (s nfaState) checkAssertion(str []rune, idx int) bool {
if s.assert == alwaysTrueAssert {
return true
}
@ -171,7 +171,7 @@ func (s state) checkAssertion(str []rune, idx int) bool {
}
// Returns true if the contents of 's' contain the value at the given index of the given string
func (s state) contentContains(str []rune, idx int) bool {
func (s nfaState) contentContains(str []rune, idx int) bool {
if s.assert != noneAssert {
return s.checkAssertion(str, idx)
}
@ -182,19 +182,19 @@ func (s state) contentContains(str []rune, idx int) bool {
return slices.Contains(s.content, int(str[idx]))
}
func (s state) isLookaround() bool {
func (s nfaState) isLookaround() bool {
return s.assert == plaAssert || s.assert == plbAssert || s.assert == nlaAssert || s.assert == nlbAssert
}
// Returns the matches for the character at the given index of the given string.
// Also returns the number of matches. Returns -1 if an assertion failed.
func (s state) matchesFor(str []rune, idx int) ([]*state, int) {
func (s nfaState) matchesFor(str []rune, idx int) ([]*nfaState, int) {
// Assertions can be viewed as 'checks'. If the check fails, we return
// an empty array and 0.
// If it passes, we treat it like any other state, and return all the transitions.
if s.assert != noneAssert {
if s.checkAssertion(str, idx) == false {
return make([]*state, 0), -1
return make([]*nfaState, 0), -1
}
}
listTransitions := s.transitions[int(str[idx])]
@ -211,7 +211,7 @@ func (s state) matchesFor(str []rune, idx int) ([]*state, int) {
}
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
func verifyLastStatesHelper(st *state, visited map[*state]bool) {
func verifyLastStatesHelper(st *nfaState, visited map[*nfaState]bool) {
if len(st.transitions) == 0 {
st.isLast = true
return
@ -228,7 +228,7 @@ func verifyLastStatesHelper(st *state, visited map[*state]bool) {
}
if st.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
transitionDests := make([]*state, 0)
transitionDests := make([]*nfaState, 0)
for _, v := range st.transitions {
transitionDests = append(transitionDests, v...)
}
@ -251,12 +251,12 @@ func verifyLastStatesHelper(st *state, visited map[*state]bool) {
}
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
func verifyLastStates(start []*state) {
verifyLastStatesHelper(start[0], make(map[*state]bool))
func verifyLastStates(start []*nfaState) {
verifyLastStatesHelper(start[0], make(map[*nfaState]bool))
}
// Concatenates s1 and s2, returns the start of the concatenation.
func concatenate(s1 *state, s2 *state) *state {
func concatenate(s1 *nfaState, s2 *nfaState) *nfaState {
if s1 == nil {
return s2
}
@ -269,13 +269,13 @@ func concatenate(s1 *state, s2 *state) *state {
return s1
}
func kleene(s1 state) (*state, error) {
func kleene(s1 nfaState) (*nfaState, error) {
if s1.isEmpty && s1.assert != noneAssert {
return nil, fmt.Errorf("previous token is not quantifiable")
}
toReturn := &state{}
toReturn.transitions = make(map[int][]*state)
toReturn := &nfaState{}
toReturn.transitions = make(map[int][]*nfaState)
toReturn.content = newContents(EPSILON)
toReturn.isEmpty = true
toReturn.isKleene = true
@ -291,9 +291,9 @@ func kleene(s1 state) (*state, error) {
return toReturn, nil
}
func alternate(s1 *state, s2 *state) *state {
toReturn := &state{}
toReturn.transitions = make(map[int][]*state)
func alternate(s1 *nfaState, s2 *nfaState) *nfaState {
toReturn := &nfaState{}
toReturn.transitions = make(map[int][]*nfaState)
toReturn.output = append(toReturn.output, s1.output...)
toReturn.output = append(toReturn.output, s2.output...)
// Unique append is used here (and elsewhere) to ensure that,
@ -313,9 +313,9 @@ func alternate(s1 *state, s2 *state) *state {
return toReturn
}
func question(s1 *state) *state { // Use the fact that ab? == a(b|)
s2 := &state{}
s2.transitions = make(map[int][]*state)
func question(s1 *nfaState) *nfaState { // Use the fact that ab? == a(b|)
s2 := &nfaState{}
s2.transitions = make(map[int][]*nfaState)
s2.content = newContents(EPSILON)
s2.output = append(s2.output, s2)
s2.isEmpty = true
@ -324,10 +324,10 @@ func question(s1 *state) *state { // Use the fact that ab? == a(b|)
}
// Creates and returns a new state with the 'default' values.
func newState() state {
ret := state{
output: make([]*state, 0),
transitions: make(map[int][]*state),
func newState() nfaState {
ret := nfaState{
output: make([]*nfaState, 0),
transitions: make(map[int][]*nfaState),
assert: noneAssert,
except: append([]rune{}, 0),
lookaroundRegex: "",
@ -339,7 +339,7 @@ func newState() state {
}
// Creates and returns a state that _always_ has a zero-length match.
func zeroLengthMatchState() state {
func zeroLengthMatchState() nfaState {
start := newState()
start.content = newContents(EPSILON)
start.isEmpty = true

Loading…
Cancel
Save