Compare commits

..

No commits in common. 'master' and 'v0.2.0' have entirely different histories.

3
.gitignore vendored

@ -1 +1,2 @@
kg/kg
re

@ -8,6 +8,6 @@ vet: fmt
buildLib: vet
go build -gcflags="all=-N -l" ./...
buildCmd: buildLib
go build -C kg/ -gcflags="all=-N -l" -o kg ./...
go build -C cmd/ -gcflags="all=-N -l" -o re ./...
test: buildCmd
go test -v ./...

@ -1,21 +0,0 @@
## Kleingrep
Kleingrep is a regular expression engine, providing a library and command-line tool written in Go.
It aims to provide a more featureful engine, compared to the one in Go's
[regexp](https://pkg.go.dev/regexp), while retaining some semblance of efficiency.
The engine does __not__ use backtracking, relying on the NFA-based method described in
[Russ Cox's articles](https://swtch.com/~rsc/regexp). As such, it is immune to catastrophic backtracking.
It also includes features not present in regexp, such as lookarounds and backreferences.
### Syntax
The syntax is, for the most part, a superset of Go's regexp. A full overview of the syntax can be found [here](https://pkg.go.dev/gitea.twomorecents.org/Rockingcool/kleingrep/regex#hdr-Syntax).
__For more information, see https://pkg.go.dev/gitea.twomorecents.org/Rockingcool/kleingrep/regex__.
### How it works
I've written about the inner workings of the engine [on my blog](https://twomorecents.org/writing-regex-engine/index.html).

@ -1,11 +1,6 @@
package main
import (
"bufio"
"os"
"slices"
"strings"
)
import "slices"
type character interface {
int | rune
@ -30,23 +25,3 @@ func genRange[T character](start, end T) []T {
}
return toRet
}
// Returns whether or not the given file contains a NULL character
func fileContainsNullChar(filename string) (bool, error) {
file, err := os.Open(filename)
if err != nil {
return true, err
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
line := scanner.Text()
if strings.Contains(line, "\000") {
return true, nil
}
}
if err := scanner.Err(); err != nil {
return true, err
}
return false, nil
}

@ -0,0 +1,225 @@
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"github.com/fatih/color"
reg "gitea.twomorecents.org/Rockingcool/kleingrep/regex"
)
func main() {
// Flags for the regex Compile function
flagsToCompile := make([]reg.ReFlag, 0)
invertFlag := flag.Bool("v", false, "Invert match.")
// This flag has two 'modes':
// 1. Without '-v': Prints only matches. Prints a newline after every match.
// 2. With '-v': Substitutes all matches with empty string.
onlyFlag := flag.Bool("o", false, "Print only colored content. Overrides -l.")
lineFlag := flag.Bool("l", false, "Only print lines with a match (or with no matches, if -v is enabled). Similar to grep's default.")
multiLineFlag := flag.Bool("t", false, "Multi-line mode. Treats newline just like any character.")
printMatchesFlag := flag.Bool("p", false, "Prints start and end index of each match. Can only be used with '-t' for multi-line mode.")
caseInsensitiveFlag := flag.Bool("i", false, "Case-insensitive. Disregard the case of all characters.")
matchNum := flag.Int("m", 0, "Print the match with the given index. Eg. -m 3 prints the third match.")
substituteText := flag.String("s", "", "Substitute the contents of each match with the given string. Overrides -o and -v")
flag.Parse()
// These flags have to be passed to the Compile function
if *multiLineFlag {
flagsToCompile = append(flagsToCompile, reg.RE_MULTILINE, reg.RE_SINGLE_LINE)
}
if *caseInsensitiveFlag {
flagsToCompile = append(flagsToCompile, reg.RE_CASE_INSENSITIVE)
}
// -l and -o are mutually exclusive: -o overrides -l
if *onlyFlag {
*lineFlag = false
}
// Check if substitute and matchNum flags have been enabled
substituteFlagEnabled := false
matchNumFlagEnabled := false
flag.Visit(func(f *flag.Flag) {
if f.Name == "s" {
substituteFlagEnabled = true
}
if f.Name == "m" {
matchNumFlagEnabled = true
}
})
// Validate matchNumFlag - must be positive integer
if matchNumFlagEnabled && *matchNum < 1 {
panic("Invalid match number to print.")
}
// Process:
// 1. Convert regex into postfix notation (Shunting-Yard algorithm)
// a. Add explicit concatenation operators to facilitate this
// 2. Build NFA from postfix representation (Thompson's algorithm)
// 3. Run the string against the NFA
if len(flag.Args()) != 1 { // flag.Args() also strips out program name
fmt.Println("ERROR: Missing cmdline args")
os.Exit(22)
}
var re string
re = flag.Args()[0]
var test_str string
var err error
var linesRead bool // Whether or not we have read the lines in the file
lineNum := 0 // Current line number
// Create reader for stdin and writer for stdout
reader := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
regComp, err := reg.Compile(re, flagsToCompile...)
if err != nil {
fmt.Println(err)
return
}
for true {
if linesRead {
break
}
if !(*multiLineFlag) {
// Read every string from stdin until we encounter an error. If the error isn't EOF, panic.
test_str, err = reader.ReadString('\n')
lineNum++
if err != nil {
if err == io.EOF {
linesRead = true
} else {
panic(err)
}
}
if len(test_str) > 0 && test_str[len(test_str)-1] == '\n' {
test_str = test_str[:len(test_str)-1]
}
} else {
// Multi-line mode - read every line of input into a temp. string.
// test_str will contain all lines of input (including newline characters)
// as one string.
var temp string
for temp, err = reader.ReadString('\n'); err == nil; temp, err = reader.ReadString('\n') {
test_str += temp
}
// Assuming err != nil
if err == io.EOF {
if len(temp) > 0 {
test_str += temp // Add the last line (if it is non-empty)
}
linesRead = true
} else {
panic(err)
}
}
matchIndices := make([]reg.Match, 0)
if matchNumFlagEnabled {
tmp, err := regComp.FindNthMatch(test_str, *matchNum)
if err == nil {
matchIndices = append(matchIndices, tmp)
}
} else {
matchIndices = regComp.FindAllSubmatch(test_str)
}
if *printMatchesFlag {
// if we are in single line mode, print the line on which
// the matches occur
if len(matchIndices) > 0 {
if !(*multiLineFlag) {
fmt.Fprintf(out, "Line %d:\n", lineNum)
}
for _, m := range matchIndices {
fmt.Fprintf(out, "%s\n", m.String())
}
err := out.Flush()
if err != nil {
panic(err)
}
}
continue
}
// Decompose the array of matchIndex structs into a flat unique array of ints - if matchIndex is {4,7}, flat array will contain 4,5,6
// This should make checking O(1) instead of O(n)
indicesToPrint := new_uniq_arr[int]()
for _, idx := range matchIndices {
indicesToPrint.add(genRange(idx[0].StartIdx, idx[0].EndIdx)...)
}
// If we are inverting, then we should print the indices which _didn't_ match
// in color.
if *invertFlag {
oldIndices := indicesToPrint.values()
indicesToPrint = new_uniq_arr[int]()
// Explanation:
// Find all numbers from 0 to len(test_str) that are NOT in oldIndices.
// These are the values we want to print, now that we have inverted the match.
// Re-initialize indicesToPrint and add all of these values to it.
indicesToPrint.add(setDifference(genRange(0, len(test_str)), oldIndices)...)
}
// If lineFlag is enabled, we should only print something if:
// a. We are not inverting, and have at least one match on the current line
// OR
// b. We are inverting, and have no matches at all on the current line.
// This checks for the inverse, and continues if it is true.
if *lineFlag {
if !(*invertFlag) && len(matchIndices) == 0 || *invertFlag && len(matchIndices) > 0 {
continue
}
}
// If we are substituting, we need a different behavior, as follows:
// For every character in the test string:
// 1. Check if the index is the start of any matchIndex
// 2. If so, print the substitute text, and set our index to
// the corresponding end index.
// 3. If not, just print the character.
if substituteFlagEnabled {
for i := range test_str {
inMatchIndex := false
for _, m := range matchIndices {
if i == m[0].StartIdx {
fmt.Fprintf(out, "%s", *substituteText)
i = m[0].EndIdx
inMatchIndex = true
break
}
}
if !inMatchIndex {
fmt.Fprintf(out, "%c", test_str[i])
}
}
} else {
for i, c := range test_str {
if indicesToPrint.contains(i) {
color.New(color.FgRed).Fprintf(out, "%c", c)
// Newline after every match - only if -o is enabled and -v is disabled.
if *onlyFlag && !(*invertFlag) {
for _, idx := range matchIndices {
if i+1 == idx[0].EndIdx { // End index is one more than last index of match
fmt.Fprintf(out, "\n")
break
}
}
}
} else {
if !(*onlyFlag) {
fmt.Fprintf(out, "%c", c)
}
}
}
}
err = out.Flush()
if err != nil {
panic(err)
}
fmt.Println()
}
}

@ -36,7 +36,3 @@ func (s uniq_arr[T]) values() []T {
}
return toRet
}
func (s uniq_arr[T]) len() int {
return len(s.backingMap)
}

@ -1,298 +0,0 @@
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"slices"
"github.com/fatih/color"
reg "gitea.twomorecents.org/Rockingcool/kleingrep/regex"
)
func main() {
// Flags for the regex Compile function
flagsToCompile := make([]reg.ReFlag, 0)
invertFlag := flag.Bool("v", false, "Invert match.")
// This flag has two 'modes':
// 1. Without '-v': Prints only matches. Prints a newline after every match.
// 2. With '-v': Substitutes all matches with empty string.
onlyFlag := flag.Bool("o", false, "Print only colored content. Overrides -l.")
lineFlag := flag.Bool("l", false, "Only print lines with a match (or with no matches, if -v is enabled). Similar to grep's default.")
multiLineFlag := flag.Bool("t", false, "Multi-line mode. Treats newline just like any character.")
printMatchesFlag := flag.Bool("p", false, "Prints start and end index of each match. Can only be used with '-t' for multi-line mode.")
caseInsensitiveFlag := flag.Bool("i", false, "Case-insensitive. Disregard the case of all characters.")
recursiveFlag := flag.Bool("r", false, "Recursively search all files in the given directory.")
lineNumFlag := flag.Bool("n", false, "For each line with a match, print the line number. Implies -l.")
matchNum := flag.Int("m", 0, "Print the match with the given index. Eg. -m 3 prints the third match.")
substituteText := flag.String("s", "", "Substitute the contents of each match with the given string. Overrides -o and -v")
flag.Parse()
// These flags have to be passed to the Compile function
if *multiLineFlag {
flagsToCompile = append(flagsToCompile, reg.RE_MULTILINE, reg.RE_SINGLE_LINE)
}
if *caseInsensitiveFlag {
flagsToCompile = append(flagsToCompile, reg.RE_CASE_INSENSITIVE)
}
// -l and -o are mutually exclusive: -o overrides -l
if *onlyFlag {
*lineFlag = false
}
// Check if substitute and matchNum flags have been enabled
substituteFlagEnabled := false
matchNumFlagEnabled := false
flag.Visit(func(f *flag.Flag) {
if f.Name == "s" {
substituteFlagEnabled = true
}
if f.Name == "m" {
matchNumFlagEnabled = true
}
})
// Validate matchNumFlag - must be positive integer
if matchNumFlagEnabled && *matchNum < 1 {
panic("Invalid match number to print.")
}
// Enable lineFlag if lineNumFlag is enabled
if *lineNumFlag {
*lineFlag = true
}
// Process:
// 1. Convert regex into postfix notation (Shunting-Yard algorithm)
// a. Add explicit concatenation operators to facilitate this
// 2. Build NFA from postfix representation (Thompson's algorithm)
// 3. Run the string against the NFA
if len(flag.Args()) < 1 { // flag.Args() also strips out program name
fmt.Printf("%s: ERROR: Missing cmdline args\n", os.Args[0])
os.Exit(22)
}
if *recursiveFlag && len(flag.Args()) < 2 { // File/Directory must be provided with '-r'
fmt.Printf("%s: ERROR: Missing cmdline args\n", os.Args[0])
os.Exit(22)
}
var re string
re = flag.Args()[0]
var inputFiles []*os.File
if len(flag.Args()) == 1 || flag.Args()[1] == "-" { // Either no file argument, or file argument is "-"
if !slices.Contains(inputFiles, os.Stdin) {
inputFiles = append(inputFiles, os.Stdin) // os.Stdin cannot be entered more than once into the file list
}
} else {
inputFilenames := flag.Args()[1:]
for _, inputFilename := range inputFilenames {
inputFile, err := os.Open(inputFilename)
defer inputFile.Close()
if err != nil {
fmt.Printf("%s: %s: No such file or directory\n", os.Args[0], inputFilename)
} else {
fileStat, err := inputFile.Stat()
if err != nil {
fmt.Printf("%v\n", err)
os.Exit(2)
} else {
if fileStat.Mode().IsDir() {
fmt.Printf("%s: %s: Is a directory\n", os.Args[0], inputFilename)
} else {
var nullCharPresent bool
if nullCharPresent, err = fileContainsNullChar(inputFilename); nullCharPresent {
if err != nil {
fmt.Printf("%v\n", err)
os.Exit(1)
} else {
fmt.Printf("%s: %s: Is a binary file\n", os.Args[0], inputFilename)
}
} else {
inputFiles = append(inputFiles, inputFile)
}
}
}
}
}
}
if len(inputFiles) == 0 { // No valid files given
os.Exit(2)
}
var test_str string
var err error
var linesRead bool // Whether or not we have read the lines in the file
lineNum := 0 // Current line number
// Create writer for stdout
out := bufio.NewWriter(os.Stdout)
// Compile regex
regComp, err := reg.Compile(re, flagsToCompile...)
if err != nil {
fmt.Println(err)
return
}
for _, inputFile := range inputFiles {
lineNum = 0
reader := bufio.NewReader(inputFile)
linesRead = false
for true {
if linesRead {
break
}
if !(*multiLineFlag) {
// Read every string from stdin until we encounter an error. If the error isn't EOF, panic.
test_str, err = reader.ReadString('\n')
lineNum++
if err != nil {
if err == io.EOF {
linesRead = true
} else {
panic(err)
}
}
if len(test_str) > 0 && test_str[len(test_str)-1] == '\n' {
test_str = test_str[:len(test_str)-1]
}
} else {
// Multi-line mode - read every line of input into a temp. string.
// test_str will contain all lines of input (including newline characters)
// as one string.
var temp string
for temp, err = reader.ReadString('\n'); err == nil; temp, err = reader.ReadString('\n') {
test_str += temp
}
// Assuming err != nil
if err == io.EOF {
if len(temp) > 0 {
test_str += temp // Add the last line (if it is non-empty)
}
linesRead = true
} else {
panic(err)
}
}
matchIndices := make([]reg.Match, 0)
if matchNumFlagEnabled {
tmp, err := regComp.FindNthMatch(test_str, *matchNum)
if err == nil {
matchIndices = append(matchIndices, tmp)
}
} else {
matchIndices = regComp.FindAllSubmatch(test_str)
}
test_str_runes := []rune(test_str) // Converting to runes preserves unicode characters
if *printMatchesFlag {
// if we are in single line mode, print the line on which
// the matches occur
if len(matchIndices) > 0 {
if !(*multiLineFlag) {
fmt.Fprintf(out, "Line %d:\n", lineNum)
}
for _, m := range matchIndices {
fmt.Fprintf(out, "%s\n", m.String())
}
err := out.Flush()
if err != nil {
panic(err)
}
}
continue
}
// Decompose the array of matchIndex structs into a flat unique array of ints - if matchIndex is {4,7}, flat array will contain 4,5,6
// This should make checking O(1) instead of O(n)
indicesToPrint := new_uniq_arr[int]()
for _, idx := range matchIndices {
indicesToPrint.add(genRange(idx[0].StartIdx, idx[0].EndIdx)...)
}
// If we are inverting, then we should print the indices which _didn't_ match
// in color.
if *invertFlag {
oldIndices := indicesToPrint.values()
indicesToPrint = new_uniq_arr[int]()
// Explanation:
// Find all numbers from 0 to len(test_str_runes) that are NOT in oldIndices.
// These are the values we want to print, now that we have inverted the match.
// Re-initialize indicesToPrint and add all of these values to it.
indicesToPrint.add(setDifference(genRange(0, len(test_str_runes)), oldIndices)...)
}
// If lineFlag is enabled, we should only print something if:
// a. We are not inverting, and have at least one match on the current line
// OR
// b. We are inverting, and have no matches at all on the current line.
// This checks for the inverse, and continues if it is true.
if *lineFlag {
if !(*invertFlag) && len(matchIndices) == 0 || *invertFlag && len(matchIndices) > 0 {
continue
} else {
if *recursiveFlag || len(flag.Args()) > 2 { // If we have 2 args, then we're only searching 1 file. We should only print the filename if there's more than 1 file.
color.New(color.FgMagenta).Fprintf(out, "%s:", inputFile.Name()) // Print filename
}
if *lineNumFlag {
color.New(color.FgGreen).Fprintf(out, "%d:", lineNum) // Print filename
}
}
}
// If we are substituting, we need a different behavior, as follows:
// For every character in the test string:
// 1. Check if the index is the start of any matchIndex
// 2. If so, print the substitute text, and set our index to
// the corresponding end index.
// 3. If not, just print the character.
if substituteFlagEnabled {
for i := range test_str_runes {
inMatchIndex := false
for _, m := range matchIndices {
if i == m[0].StartIdx {
fmt.Fprintf(out, "%s", *substituteText)
i = m[0].EndIdx
inMatchIndex = true
break
}
}
if !inMatchIndex {
fmt.Fprintf(out, "%c", test_str_runes[i])
}
}
} else {
for i, c := range test_str_runes {
if indicesToPrint.contains(i) {
color.New(color.FgRed, color.Bold).Fprintf(out, "%c", c)
// Newline after every match - only if -o is enabled and -v is disabled.
if *onlyFlag && !(*invertFlag) {
for matchIdxNum, idx := range matchIndices {
if matchIdxNum < len(matchIndices)-1 { // Only print a newline afte printing a match, if there are multiple matches on the line, and we aren't on the last one. This is because the newline that gets added at the end will take care of that.
if i+1 == idx[0].EndIdx { // End index is one more than last index of match
fmt.Fprintf(out, "\n")
break
}
}
}
}
} else {
if !(*onlyFlag) {
fmt.Fprintf(out, "%c", c)
}
}
}
}
err = out.Flush()
if err != nil {
panic(err)
}
// If the last character in the string wasn't a newline, AND we either have don't -o set or we do (and we've matched something), then print a newline
if (len(test_str_runes) > 0 && test_str_runes[len(test_str_runes)-1] != '\n') &&
(!*onlyFlag || indicesToPrint.len() > 0) {
fmt.Println()
}
}
}
}

@ -47,7 +47,6 @@ func (re *Reg) UnmarshalText(text []byte) error {
return err
}
// Longest makes future searches prefer the longest branch of an alternation, as opposed to the leftmost branch.
func (re *Reg) Longest() {
re.preferLongest = true
}
@ -65,7 +64,7 @@ const (
)
func isOperator(c rune) bool {
if c == '+' || c == '?' || c == '*' || c == '|' || c == concatRune || c == lazyPlusRune || c == lazyKleeneRune || c == lazyQuestionRune {
if c == '+' || c == '?' || c == '*' || c == '|' || c == concatRune {
return true
}
return false
@ -73,7 +72,7 @@ func isOperator(c rune) bool {
/* priority returns the priority of the given operator */
func priority(op rune) int {
precedence := []rune{'|', concatRune, '+', lazyPlusRune, '*', lazyKleeneRune, '?', lazyQuestionRune}
precedence := []rune{'|', concatRune, '+', '*', '?'}
return slices.Index(precedence, op)
}
@ -109,48 +108,6 @@ func getPOSIXClass(str []rune) (bool, string) {
return true, rtv
}
// isUnicodeCharClassLetter returns whether or not the given letter represents a unicode character class.
func isUnicodeCharClassLetter(c rune) bool {
return slices.Contains([]rune{'L', 'M', 'S', 'N', 'P', 'C', 'Z'}, c)
}
// rangeTableToRuneSlice converts the given range table into a rune slice and returns it.
func rangeTableToRuneSlice(rangetable *unicode.RangeTable) []rune {
var rtv []rune
for _, r := range rangetable.R16 {
for c := r.Lo; c <= r.Hi; c += r.Stride {
rtv = append(rtv, rune(c))
}
}
for _, r := range rangetable.R32 {
for c := r.Lo; c <= r.Hi; c += r.Stride {
rtv = append(rtv, rune(c))
}
}
return rtv
}
// unicodeCharClassToRange converts the given unicode character class name into a list of characters in that class.
// This class could also be a single letter eg. 'C'.
func unicodeCharClassToRange(class string) ([]rune, error) {
if len(class) == 0 {
return nil, fmt.Errorf("empty unicode character class")
}
if len(class) == 1 || len(class) == 2 {
if rangeTable, ok := unicode.Categories[class]; ok {
return rangeTableToRuneSlice(rangeTable), nil
} else {
return nil, fmt.Errorf("invalid short unicode character class")
}
} else {
if rangeTable, ok := unicode.Scripts[class]; ok {
return rangeTableToRuneSlice(rangeTable), nil
} else {
return nil, fmt.Errorf("invalid long unicode character class")
}
}
}
// Stores whether the case-insensitive flag has been enabled.
var caseInsensitive bool
@ -209,6 +166,9 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
// metacharacter. Later, in thompson(), these will be converted back. This avoids
// confusion in detecting whether a character is escaped eg. detecting
// whether '\\[a]' has an escaped opening bracket (it doesn't).
//
// 5. Check for non-greedy operators. These are not supported at the moment, so an error
// must be thrown if the user attempts to use a non-greedy operator.
for i := 0; i < len(re_runes_orig); i++ {
c := re_runes_orig[i]
if c == '<' && (i == 0 || (re_runes_orig[i-1] != '\\' && re_runes_orig[i-1] != '?')) {
@ -255,16 +215,8 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
} else if c == ']' && (i == 0 || re_runes[len(re_runes)-1] != '\\') {
re_runes = append(re_runes, rbracketRune)
continue
} else if slices.Contains([]rune{'+', '*', '?'}, c) && (i > 0 && re_runes_orig[i-1] != '\\') && (i < len(re_runes_orig)-1 && re_runes_orig[i+1] == '?') {
switch c {
case '+':
re_runes = append(re_runes, lazyPlusRune)
case '*':
re_runes = append(re_runes, lazyKleeneRune)
case '?':
re_runes = append(re_runes, lazyQuestionRune)
}
i++
} else if slices.Contains([]rune{'+', '*', '?'}, c) && (i < len(re_runes_orig)-1 && re_runes_orig[i+1] == '?') {
return nil, fmt.Errorf("non-greedy operators are not supported")
} else {
re_runes = append(re_runes, c)
}
@ -357,44 +309,17 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
}
} else if isHex(re_runes[i]) {
re_postfix = append(re_postfix, re_runes[i:i+2]...)
i += 1 // I don't skip forward 2 steps, because the second step will happen with the loop increment
i += 2
} else {
return nil, fmt.Errorf("invalid hex value in expression")
}
} else if re_runes[i] == 'p' || re_runes[i] == 'P' { // Unicode character class (P is negated unicode charclass)
re_postfix = append(re_postfix, re_runes[i])
i++
if i >= len(re_runes) {
return nil, fmt.Errorf("error parsing unicode character class in expression")
}
if re_runes[i] == '{' { // Full name charclass
for re_runes[i] != '}' {
re_postfix = append(re_postfix, re_runes[i])
i++
}
re_postfix = append(re_postfix, re_runes[i])
i++
} else if isUnicodeCharClassLetter(re_runes[i]) {
re_postfix = append(re_postfix, re_runes[i])
i++
} else {
return nil, fmt.Errorf("error parsing unicode character class in expression")
}
i-- // The loop increment at the top will move us forward
} else if re_runes[i] == '0' { // Start of octal value
} else if isOctal(re_runes[i]) {
numDigits := 1
for i+numDigits < len(re_runes) && numDigits < 4 && isOctal(re_runes[i+numDigits]) { // Skip while we see an octal character (max of 4, starting with 0)
for i+numDigits < len(re_runes) && numDigits < 3 && isOctal(re_runes[i+numDigits]) { // Skip while we see an octal character (max of 3)
numDigits++
}
re_postfix = append(re_postfix, re_runes[i:i+numDigits]...)
i += (numDigits - 1) // I have to move back a step, so that I can add a concatenation operator if necessary, and so that the increment at the bottom of the loop works as intended
} else if unicode.IsDigit(re_runes[i]) { // Any other number - backreference
numDigits := 1
for i+numDigits < len(re_runes) && unicode.IsDigit(re_runes[i+numDigits]) { // Skip while we see a digit
numDigits++
}
re_postfix = append(re_postfix, re_runes[i:i+numDigits]...)
i += (numDigits - 1) // Move back a step to add concatenation operator
} else {
re_postfix = append(re_postfix, re_runes[i])
}
@ -411,10 +336,10 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
if i >= len(re_runes) {
return nil, fmt.Errorf("unclosed lookaround")
}
if (re_runes[i] == '(' && re_runes[i-1] != '\\') || re_runes[i] == nonCapLparenRune {
if re_runes[i] == '(' || re_runes[i] == nonCapLparenRune {
numOpenParens++
}
if re_runes[i] == ')' && re_runes[i-1] != '\\' {
if re_runes[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
@ -427,7 +352,7 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
}
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != nonCapLparenRune && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
if i < len(re_runes)-1 {
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != lazyKleeneRune && re_runes[i+1] != '+' && re_runes[i+1] != lazyPlusRune && re_runes[i+1] != '?' && re_runes[i+1] != lazyQuestionRune && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
re_postfix = append(re_postfix, concatRune)
}
}
@ -439,9 +364,7 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
outQueue := make([]postfixNode, 0) // Output queue
// Actual algorithm
numOpenParens := 0 // Number of open parentheses
parenIndices := make([]Group, 0) // I really shouldn't be using Group here, because that's strictly for matching purposes, but its a convenient way to store the indices of the opening and closing parens.
parenIndices = append(parenIndices, Group{0, 0}) // I append a weird value here, because the 0-th group doesn't have any parens. This way, the 1st group will be at index 1, 2nd at 2 ...
numOpenParens := 0 // Number of open parentheses
for i := 0; i < len(re_postfix); i++ {
/* Two cases:
1. Current character is alphanumeric - send to output queue
@ -497,44 +420,11 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
} else {
return nil, fmt.Errorf("not enough hex characters found in expression")
}
} else if re_postfix[i] == 'p' || re_postfix[i] == 'P' {
charClassInverted := (re_postfix[i] == 'P')
var charsInClass []rune
i++
if isUnicodeCharClassLetter(re_postfix[i]) {
var err error
charsInClass, err = unicodeCharClassToRange(string(re_postfix[i]))
if err != nil {
return nil, err
}
} else if re_postfix[i] == '{' {
i++ // Skip opening bracket
unicodeCharClassStr := ""
for re_postfix[i] != '}' {
unicodeCharClassStr += string(re_postfix[i])
i++
}
var err error
charsInClass, err = unicodeCharClassToRange(unicodeCharClassStr)
if err != nil {
return nil, err
}
} else {
return nil, fmt.Errorf("error parsing unicode character class in expression")
}
var toAppend postfixNode
if !charClassInverted { // \p
toAppend = newPostfixNode(charsInClass...)
} else { // \P
toAppend = newPostfixDotNode()
toAppend.except = append([]postfixNode{}, newPostfixNode(charsInClass...))
}
outQueue = append(outQueue, toAppend)
} else if re_postfix[i] == '0' { // Octal value
} else if isOctal(re_postfix[i]) { // Octal value
var octVal int64
var octValStr string
numDigitsParsed := 0
for (i+numDigitsParsed) < len(re_postfix) && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 4 {
for (i+numDigitsParsed) < len(re_postfix) && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 {
octValStr += string(re_postfix[i+numDigitsParsed])
numDigitsParsed++
}
@ -547,20 +437,6 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
}
i += numDigitsParsed - 1 // Shift forward by the number of digits that were parsed. Move back one character, because the loop increment will move us back to the next character automatically
outQueue = append(outQueue, newPostfixCharNode(rune(octVal)))
} else if unicode.IsDigit(re_postfix[i]) { // Backreference
var num int64
var numStr string
numDigitsParsed := 0
for (i+numDigitsParsed) < len(re_postfix) && unicode.IsDigit(re_postfix[i+numDigitsParsed]) {
numStr += string(re_postfix[i+numDigitsParsed])
numDigitsParsed++
}
num, err := strconv.ParseInt(numStr, 10, 32)
if err != nil {
return nil, fmt.Errorf("error parsing backreference in expresion")
}
i += numDigitsParsed - 1
outQueue = append(outQueue, newPostfixBackreferenceNode(int(num)))
} else {
escapedNode, err := newEscapedNode(re_postfix[i], false)
if err != nil {
@ -590,10 +466,10 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
if i >= len(re_postfix) {
return nil, fmt.Errorf("unclosed lookaround")
}
if (re_postfix[i] == '(' && re_postfix[i-1] != '\\') || re_postfix[i] == nonCapLparenRune {
if re_postfix[i] == '(' || re_postfix[i] == nonCapLparenRune {
numOpenParens++
}
if re_postfix[i] == ')' && re_postfix[i-1] != '\\' {
if re_postfix[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
@ -712,44 +588,11 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
} else {
return nil, fmt.Errorf("not enough hex characters found in character class")
}
} else if re_postfix[i] == 'p' || re_postfix[i] == 'P' {
charClassInverted := (re_postfix[i] == 'P')
var charsInList []rune
i++
if isUnicodeCharClassLetter(re_postfix[i]) {
var err error
charsInList, err = unicodeCharClassToRange(string(re_postfix[i]))
if err != nil {
return nil, err
}
} else if re_postfix[i] == '{' {
i++ // Skip opening bracket
unicodeCharClassStr := ""
for re_postfix[i] != '}' {
unicodeCharClassStr += string(re_postfix[i])
i++
}
var err error
charsInList, err = unicodeCharClassToRange(unicodeCharClassStr)
if err != nil {
return nil, err
}
} else {
return nil, fmt.Errorf("error parsing unicode character class in expression")
}
if !charClassInverted {
chars = append(chars, newPostfixNode(charsInList...))
} else {
toAppend := newPostfixDotNode()
toAppend.except = append([]postfixNode{}, newPostfixNode(charsInList...))
chars = append(chars, toAppend)
}
} else if re_postfix[i] == '0' { // Octal value
} else if isOctal(re_postfix[i]) { // Octal value
var octVal int64
var octValStr string
numDigitsParsed := 0
for (i+numDigitsParsed) < len(re_postfix)-1 && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 4 { // The '-1' exists, because even in the worst case (the character class extends till the end), the last character must be a closing bracket (and nothing else)
for (i+numDigitsParsed) < len(re_postfix)-1 && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 { // The '-1' exists, because even in the worst case (the character class extends till the end), the last character must be a closing bracket (and nothing else)
octValStr += string(re_postfix[i+numDigitsParsed])
numDigitsParsed++
}
@ -946,10 +789,6 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
}
outQueue[idx].startReps = startRangeNum
outQueue[idx].endReps = endRangeNum
if i < len(re_postfix)-1 && re_postfix[i+1] == '?' { // lazy repitition
outQueue[idx].isLazy = true
i++
}
}
if c == '(' || c == nonCapLparenRune {
opStack = append(opStack, c)
@ -957,7 +796,6 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
outQueue = append(outQueue, newPostfixNode(c))
}
numOpenParens++
parenIndices = append(parenIndices, Group{StartIdx: len(outQueue) - 1}) // Push the index of the lparen into parenIndices
}
if c == ')' {
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Throw error if we reach the end of the stack.
@ -974,7 +812,6 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
outQueue = append(outQueue, newPostfixNode(')')) // Add closing parentheses
}
parenIndices[numOpenParens].EndIdx = len(outQueue) - 1
numOpenParens--
}
}
@ -989,11 +826,6 @@ func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
return nil, fmt.Errorf("imbalanced parantheses")
}
// outQueue, _, err := rewriteBackreferences(outQueue, parenIndices)
// if err != nil {
// return nil, err
// }
return outQueue, nil
}
@ -1205,21 +1037,6 @@ func thompson(re []postfixNode) (Reg, error) {
})
nfa = append(nfa, toAdd)
}
if c.nodetype == backreferenceNode {
if c.referencedGroup > numGroups {
return Reg{}, fmt.Errorf("invalid backreference")
}
stateToAdd := &nfaState{}
stateToAdd.assert = noneAssert
stateToAdd.content = newContents(epsilon)
stateToAdd.isEmpty = true
stateToAdd.isBackreference = true
stateToAdd.output = make([]*nfaState, 0)
stateToAdd.output = append(stateToAdd.output, stateToAdd)
stateToAdd.referredGroup = c.referencedGroup
stateToAdd.threadBackref = 0
nfa = append(nfa, stateToAdd)
}
// Must be an operator if it isn't a character
switch c.nodetype {
case concatenateNode:
@ -1243,9 +1060,6 @@ func thompson(re []postfixNode) (Reg, error) {
if err != nil {
return Reg{}, err
}
if c.isLazy {
stateToAdd.isLazy = true
}
nfa = append(nfa, stateToAdd)
case plusNode: // a+ is equivalent to aa*
s1 := mustPop(&nfa)
@ -1253,9 +1067,6 @@ func thompson(re []postfixNode) (Reg, error) {
if err != nil {
return Reg{}, err
}
if c.isLazy {
s2.isLazy = true
}
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case questionNode: // ab? is equivalent to a(b|)
@ -1267,9 +1078,6 @@ func thompson(re []postfixNode) (Reg, error) {
if err != nil {
return Reg{}, err
}
if c.isLazy {
s2.isLazy = true
}
nfa = append(nfa, s2)
case pipeNode:
// A pipe operator doesn't actually need either operand to be present. If an operand isn't present,
@ -1325,9 +1133,6 @@ func thompson(re []postfixNode) (Reg, error) {
if err != nil {
return Reg{}, err
}
if c.isLazy {
s2.isLazy = true
}
stateToAdd = concatenate(stateToAdd, s2)
} else { // Case 2
for i := c.startReps; i < c.endReps; i++ {
@ -1335,9 +1140,6 @@ func thompson(re []postfixNode) (Reg, error) {
if err != nil {
return Reg{}, fmt.Errorf("error processing bounded repetition")
}
if c.isLazy {
tmp.isLazy = true
}
stateToAdd = concatenate(stateToAdd, tmp)
}
}

@ -18,7 +18,7 @@ Single characters:
[^abc] Negated character class - match any character except a, b and c
[^a-z] Negated character range - do not match any character from a to z
\[ Match a literal '['. Backslashes can escape any character with special meaning, including another backslash.
\0452 Match the character with the octal value 452 (up to 4 digits, first digit must be 0)
\452 Match the character with the octal value 452 (up to 3 digits)
\xFF Match the character with the hex value FF (exactly 2 characters)
\x{0000FF} Match the character with the hex value 0000FF (exactly 6 characters)
\n Newline
@ -60,24 +60,14 @@ Composition:
x|y Match x or y (prefer x)
xy|z Match xy or z (prefer xy)
Repitition:
Repitition (always greedy, preferring more):
Greedy:
x* Match x zero or more times, prefer more
x+ Match x one or more times, prefer more
x? Match x zero or one time, prefer one
x{m,n} Match x between m and n times (inclusive), prefer more
x{m,} Match x atleast m times, prefer more
x{,n} Match x between 0 and n times (inclusive), prefer more
x{m} Match x exactly m times
Lazy:
x*? Match x zero or more times, prefer fewer
x+? Match x one or more times, prefer fewer
x?? Match x zero or one time, prefer zero
x{m,n}? Match x between m and n times (inclusive), prefer fewer
x{m,}? Match x atleast m times, prefer fewer
x{,n}? Match x between 0 and n times (inclusive), prefer fewer
x* Match x zero or more times
x+ Match x one or more times
x? Match x zero or one time
x{m,n} Match x between m and n times (inclusive)
x{m,} Match x atleast m times
x{,n} Match x between 0 and n times (inclusive)
x{m} Match x exactly m times
Grouping:
@ -103,10 +93,6 @@ Lookarounds:
(?<=x)y Positive lookbehind - Match y if preceded by x
(?<!x)y Negative lookbehind - Match y if NOT preceded by x
Backreferences:
(xy)\1 Match 'xy' followed by the text most recently captured by group 1 (in this case, 'xy')
Numeric ranges:
<x-y> Match any number from x to y (inclusive) (x and y must be positive numbers)
@ -117,13 +103,17 @@ Numeric ranges:
The engine and the API differ from [regexp] in a few ways, some of them very subtle.
The key differences are mentioned below.
1. Byte-slices and runes:
1. Greediness:
This engine currently does not support non-greedy operators.
2. Byte-slices and runes:
My engine does not support byte-slices. When a matching function receives a string, it converts it into a
rune-slice to iterate through it. While this has some space overhead, the convenience of built-in unicode
support made the tradeoff worth it.
2. Return values
3. Return values
Rather than using primitives for return values, my engine defines two types that are used as return
values: a [Group] represents a capturing group, and a [Match] represents a list of groups.
@ -158,15 +148,14 @@ returns the 0-group.
The following features from [regexp] are (currently) NOT supported:
1. Named capturing groups
2. Negated POSIX classes
3. Embedded flags (flags are instead passed as arguments to [Compile])
4. Literal text with \Q ... \E
5. Finite repetition with no start (defaulting at 0)
2. Non-greedy operators
3. Unicode character classes
4. Embedded flags (flags are instead passed as arguments to [Compile])
5. Literal text with \Q ... \E
The following features are not available in [regexp], but are supported in my engine:
1. Lookarounds
2. Numeric ranges
3. Backreferences
I hope to shorten the first list, and expand the second.
*/

@ -234,16 +234,16 @@ func addStateToList(str []rune, idx int, list []nfaState, state nfaState, thread
}
visited = append(visited, state)
if (state.isKleene || state.isQuestion) && (state.isLazy == false) { // Greedy quantifiers
if state.isKleene || state.isQuestion {
copyThread(state.splitState, state)
list := addStateToList(str, idx, list, *state.splitState, threadGroups, visited, preferLongest)
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited, preferLongest)
copyThread(state.next, state)
list = addStateToList(str, idx, list, *state.next, threadGroups, visited, preferLongest)
return list
}
if state.isAlternation || ((state.isKleene || state.isQuestion) && state.isLazy) { // Alternation or lazy quantifier
if state.isAlternation {
copyThread(state.next, state)
list := addStateToList(str, idx, list, *state.next, threadGroups, visited, preferLongest)
list = addStateToList(str, idx, list, *state.next, threadGroups, visited, preferLongest)
copyThread(state.splitState, state)
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited, preferLongest)
return list
@ -257,12 +257,10 @@ func addStateToList(str []rune, idx int, list []nfaState, state nfaState, thread
}
if state.groupBegin {
state.threadGroups[state.groupNum].StartIdx = idx
copyThread(state.next, state)
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited, preferLongest)
}
if state.groupEnd {
state.threadGroups[state.groupNum].EndIdx = idx
copyThread(state.next, state)
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited, preferLongest)
}
return append(list, state)
@ -315,25 +313,11 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
if !preferLongest {
break
}
} else if !currentState.isAlternation && !currentState.isKleene && !currentState.isQuestion && !currentState.isBackreference && !currentState.groupBegin && !currentState.groupEnd && currentState.assert == noneAssert { // Normal character
} else if !currentState.isAlternation && !currentState.isKleene && !currentState.isQuestion && !currentState.groupBegin && !currentState.groupEnd && currentState.assert == noneAssert { // Normal character
if currentState.contentContains(str, idx, preferLongest) {
nextStates = addStateToList(str, idx+1, nextStates, *currentState.next, currentState.threadGroups, nil, preferLongest)
}
} else if currentState.isBackreference && currentState.threadGroups[currentState.referredGroup].IsValid() {
groupLength := currentState.threadGroups[currentState.referredGroup].EndIdx - currentState.threadGroups[currentState.referredGroup].StartIdx
if currentState.threadBackref == groupLength {
currentState.threadBackref = 0
copyThread(currentState.next, currentState)
currentStates = addStateToList(str, idx, currentStates, *currentState.next, currentState.threadGroups, nil, preferLongest)
} else {
idxInReferredGroup := currentState.threadGroups[currentState.referredGroup].StartIdx + currentState.threadBackref
if idxInReferredGroup < len(str) && idx < len(str) && str[idxInReferredGroup] == str[idx] {
currentState.threadBackref += 1
nextStates = append(nextStates, currentState)
}
}
}
}
currentStates = append([]nfaState{}, nextStates...)
nextStates = nil

@ -16,11 +16,8 @@ var rparenRune rune = 0xF0006
var nonCapLparenRune rune = 0xF0007 // Represents a non-capturing group's LPAREN
var escBackslashRune rune = 0xF0008 // Represents an escaped backslash
var charRangeRune rune = 0xF0009 // Represents a character range
var lazyKleeneRune rune = 0xF000A // Represents a lazy kleene star
var lazyPlusRune rune = 0xF000B // Represents a lazy plus operator
var lazyQuestionRune rune = 0xF000C // Represents a lazy question operator
var specialChars = []rune{'?', lazyQuestionRune, '*', lazyKleeneRune, '\\', '^', '$', '{', '}', '(', ')', '[', ']', '+', lazyPlusRune, '|', '.', concatRune, '<', '>', lbracketRune, rbracketRune, nonCapLparenRune}
var specialChars = []rune{'?', '*', '\\', '^', '$', '{', '}', '(', ')', '[', ']', '+', '|', '.', concatRune, '<', '>', lbracketRune, rbracketRune, nonCapLparenRune}
// An interface for int and rune, which are identical
type character interface {

@ -34,7 +34,6 @@ type nfaState struct {
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
isQuestion bool // Identifies whether current node is a 0-state representing the question operator
isAlternation bool // Identifies whether current node is a 0-state representing an alternation
isLazy bool // Only for split states - Identifies whether or not to flip the order of branches (try one branch before the other)
splitState *nfaState // Only for alternation states - the 'other' branch of the alternation ('next' is the first)
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
@ -45,11 +44,9 @@ type nfaState struct {
groupBegin bool // Whether or not the node starts a capturing group
groupEnd bool // Whether or not the node ends a capturing group
groupNum int // Which capturing group the node starts / ends
isBackreference bool // Whether or not current node is backreference
referredGroup int // If current node is a backreference, the node that it points to
// The following properties depend on the current match - I should think about resetting them for every match.
threadGroups []Group // Assuming that a state is part of a 'thread' in the matching process, this array stores the indices of capturing groups in the current thread. As matches are found for this state, its groups will be copied over.
threadBackref int // If current node is a backreference, how many characters to look forward into the referred group
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
threadGroups []Group // Assuming that a state is part of a 'thread' in the matching process, this array stores the indices of capturing groups in the current thread. As matches are found for this state, its groups will be copied over.
}
// Clones the NFA starting from the given state.
@ -78,16 +75,14 @@ func cloneStateHelper(stateToClone *nfaState, cloneMap map[*nfaState]*nfaState)
isKleene: stateToClone.isKleene,
isQuestion: stateToClone.isQuestion,
isAlternation: stateToClone.isAlternation,
isLazy: stateToClone.isLazy,
assert: stateToClone.assert,
zeroMatchFound: stateToClone.zeroMatchFound,
allChars: stateToClone.allChars,
except: append([]rune{}, stateToClone.except...),
lookaroundRegex: stateToClone.lookaroundRegex,
groupEnd: stateToClone.groupEnd,
groupBegin: stateToClone.groupBegin,
groupNum: stateToClone.groupNum,
isBackreference: stateToClone.isBackreference,
referredGroup: stateToClone.referredGroup,
}
cloneMap[stateToClone] = clone
for i, s := range stateToClone.output {
@ -127,7 +122,6 @@ func resetThreadsHelper(state *nfaState, visitedMap map[*nfaState]bool) {
}
// Assuming it hasn't been visited
state.threadGroups = nil
state.threadBackref = 0
visitedMap[state] = true
if state.isAlternation {
resetThreadsHelper(state.next, visitedMap)
@ -425,7 +419,6 @@ func (s nfaState) equals(other nfaState) bool {
s.next == other.next &&
s.isKleene == other.isKleene &&
s.isQuestion == other.isQuestion &&
s.isLazy == other.isLazy &&
s.isAlternation == other.isAlternation &&
s.splitState == other.splitState &&
s.assert == other.assert &&
@ -435,8 +428,7 @@ func (s nfaState) equals(other nfaState) bool {
s.groupBegin == other.groupBegin &&
s.groupEnd == other.groupEnd &&
s.groupNum == other.groupNum &&
slices.Equal(s.threadGroups, other.threadGroups) &&
s.threadBackref == other.threadBackref
slices.Equal(s.threadGroups, other.threadGroups)
}
func stateExists(list []nfaState, s nfaState) bool {

@ -1,8 +1,6 @@
package regex
import (
"fmt"
)
import "fmt"
type nodeType int
@ -22,7 +20,6 @@ const (
assertionNode
lparenNode
rparenNode
backreferenceNode
)
// Helper constants for lookarounds
@ -34,17 +31,15 @@ const lookbehind = -1
var infinite_reps int = -1 // Represents infinite reps eg. the end range in {5,}
// This represents a node in the postfix representation of the expression
type postfixNode struct {
nodetype nodeType
contents []rune // Contents of the node
startReps int // Minimum number of times the node should be repeated - used with numeric specifiers
endReps int // Maximum number of times the node should be repeated - used with numeric specifiers
allChars bool // Whether or not the current node represents all characters (eg. dot metacharacter)
except []postfixNode // For inverted character classes, we match every unicode character _except_ a few. In this case, allChars is true and the exceptions are placed here.
lookaroundSign int // ONLY USED WHEN nodetype == ASSERTION. Whether we have a positive or negative lookaround.
lookaroundDir int // Lookbehind or lookahead
nodeContents []postfixNode // ONLY USED WHEN nodetype == CHARCLASS. Holds all the nodes inside the given CHARCLASS node.
referencedGroup int // ONLY USED WHEN nodetype == backreferenceNode. Holds the group which this one refers to. After parsing is done, the expression will be rewritten eg. (a)\1 will become (a)(a). So the return value of ShuntingYard() shouldn't contain a backreferenceNode.
isLazy bool // ONLY USED WHEN nodetype == kleene or question
nodetype nodeType
contents []rune // Contents of the node
startReps int // Minimum number of times the node should be repeated - used with numeric specifiers
endReps int // Maximum number of times the node should be repeated - used with numeric specifiers
allChars bool // Whether or not the current node represents all characters (eg. dot metacharacter)
except []postfixNode // For inverted character classes, we match every unicode character _except_ a few. In this case, allChars is true and the exceptions are placed here.
lookaroundSign int // ONLY USED WHEN nodetype == ASSERTION. Whether we have a positive or negative lookaround.
lookaroundDir int // Lookbehind or lookahead
nodeContents []postfixNode // ONLY USED WHEN nodetype == CHARCLASS. Holds all the nodes inside the given CHARCLASS node.
}
// Converts the given list of postfixNodes to one node of type CHARCLASS.
@ -163,19 +158,10 @@ func newPostfixNode(contents ...rune) postfixNode {
switch contents[0] {
case '+':
to_return.nodetype = plusNode
case lazyPlusRune:
to_return.nodetype = plusNode
to_return.isLazy = true
case '?':
to_return.nodetype = questionNode
case lazyQuestionRune:
to_return.nodetype = questionNode
to_return.isLazy = true
case '*':
to_return.nodetype = kleeneNode
case lazyKleeneRune:
to_return.nodetype = kleeneNode
to_return.isLazy = true
case '|':
to_return.nodetype = pipeNode
case concatRune:
@ -222,44 +208,3 @@ func newPostfixCharNode(contents ...rune) postfixNode {
toReturn.contents = append(toReturn.contents, contents...)
return toReturn
}
// newPostfixBackreferenceNode creates and returns a backreference node, referring to the given group
func newPostfixBackreferenceNode(referred int) postfixNode {
toReturn := postfixNode{}
toReturn.startReps = 1
toReturn.endReps = 1
toReturn.nodetype = backreferenceNode
toReturn.referencedGroup = referred
return toReturn
}
// rewriteBackreferences rewrites any backreferences in the given postfixNode slice, into their respective groups.
// It stores the relation in a map, and returns it as the second return value.
// It uses parenIndices to determine where a group starts and ends in nodes.
// For example, \1(a) will be rewritten into (a)(a), and 1 -> 2 will be the hashmap value.
// It returns an error if a backreference points to an invalid group.
// func rewriteBackreferences(nodes []postfixNode, parenIndices []Group) ([]postfixNode, map[int]int, error) {
// rtv := make([]postfixNode, 0)
// referMap := make(map[int]int)
// numGroups := 0
// groupIncrement := 0 // If we have a backreference before the group its referring to, then the group its referring to will have its group number incremented.
// for i, node := range nodes {
// if node.nodetype == backreferenceNode {
// if node.referencedGroup >= len(parenIndices) {
// return nil, nil, fmt.Errorf("invalid backreference")
// }
// rtv = slices.Concat(rtv, nodes[parenIndices[node.referencedGroup].StartIdx:parenIndices[node.referencedGroup].EndIdx+1]) // Add all the nodes in the group to rtv
// numGroups += 1
// if i < parenIndices[node.referencedGroup].StartIdx {
// groupIncrement += 1
// }
// referMap[numGroups] = node.referencedGroup + groupIncrement
// } else {
// rtv = append(rtv, node)
// if node.nodetype == lparenNode {
// numGroups += 1
// }
// }
// }
// return rtv, referMap, nil
// }

@ -117,7 +117,6 @@ var reTests = []struct {
{`\d{3,4}`, nil, "ababab555", []Group{{6, 9}}},
{`\bpaint\b`, nil, "paints", []Group{}},
{`\b\w{5}\b`, nil, "paint", []Group{{0, 5}}},
{`\w{}`, nil, "test", nil},
{`[^\w]`, nil, "abcdef1230[]qq';;'", []Group{{10, 11}, {11, 12}, {14, 15}, {15, 16}, {16, 17}, {17, 18}}},
{`[^\W]`, nil, "abcdef1230[]qq';;'", []Group{{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {12, 13}, {13, 14}}},
{`[\[\]]`, nil, "a[b[l]]", []Group{{1, 2}, {3, 4}, {5, 6}, {6, 7}}},
@ -180,7 +179,7 @@ var reTests = []struct {
{"[[:graph:]]+", nil, "abcdefghijklmnopqrstuvwyxzABCDEFGHIJKLMNOPRQSTUVWXYZ0123456789!@#$%^&*", []Group{{0, 70}}},
// Test cases from Python's RE test suite
{`[\01]`, nil, "\x01", []Group{{0, 1}}},
{`[\1]`, nil, "\x01", []Group{{0, 1}}},
{`\0`, nil, "\x00", []Group{{0, 1}}},
{`[\0a]`, nil, "\x00", []Group{{0, 1}}},
@ -195,7 +194,7 @@ var reTests = []struct {
{`\x00ffffffffffffff`, nil, "\xff", []Group{}},
{`\x00f`, nil, "\x0f", []Group{}},
{`\x00fe`, nil, "\xfe", []Group{}},
{`^\w+=(\\[\000-\0277]|[^\n\\])*`, nil, "SRC=eval.c g.c blah blah blah \\\\\n\tapes.c", []Group{{0, 32}}},
{`^\w+=(\\[\000-\277]|[^\n\\])*`, nil, "SRC=eval.c g.c blah blah blah \\\\\n\tapes.c", []Group{{0, 32}}},
{`a.b`, nil, `acb`, []Group{{0, 3}}},
{`a.b`, nil, "a\nb", []Group{}},
@ -313,7 +312,11 @@ var reTests = []struct {
{`a[-]?c`, nil, `ac`, []Group{{0, 2}}},
{`^(.+)?B`, nil, `AB`, []Group{{0, 2}}},
{`\0009`, nil, "\x009", []Group{{0, 2}}},
{`\0141`, nil, "a", []Group{{0, 1}}},
{`\141`, nil, "a", []Group{{0, 1}}},
// At this point, the python test suite has a bunch
// of backreference tests. Since my engine doesn't
// implement backreferences, I've skipped those tests.
{`*a`, nil, ``, nil},
{`(*)b`, nil, ``, nil},
@ -430,8 +433,7 @@ var reTests = []struct {
{`a[-]?c`, []ReFlag{RE_CASE_INSENSITIVE}, `AC`, []Group{{0, 2}}},
{`^(.+)?B`, []ReFlag{RE_CASE_INSENSITIVE}, `ab`, []Group{{0, 2}}},
{`\0009`, []ReFlag{RE_CASE_INSENSITIVE}, "\x009", []Group{{0, 2}}},
{`\0141`, []ReFlag{RE_CASE_INSENSITIVE}, "A", []Group{{0, 1}}},
{`\0141\0141`, []ReFlag{RE_CASE_INSENSITIVE}, "AA", []Group{{0, 2}}},
{`\141`, []ReFlag{RE_CASE_INSENSITIVE}, "A", []Group{{0, 1}}},
{`a[-]?c`, []ReFlag{RE_CASE_INSENSITIVE}, `AC`, []Group{{0, 2}}},
@ -462,10 +464,8 @@ var reTests = []struct {
{`[\D5]+`, nil, `1234abc5678`, []Group{{4, 8}}},
{`[\da-fA-F]+`, nil, `123abc`, []Group{{0, 6}}},
{`\xff`, nil, "\u00ff", []Group{{0, 1}}},
{`\xff+`, nil, "\u00ff\u00ff", []Group{{0, 2}}},
{`\xFF`, nil, "\u00ff", []Group{{0, 1}}},
{`\x00ff`, nil, "\u00ff", []Group{}},
{`\x{0000ff}+`, nil, "\u00ff\u00ff", []Group{{0, 2}}},
{`\x{0000ff}`, nil, "\u00ff", []Group{{0, 1}}},
{`\x{0000FF}`, nil, "\u00ff", []Group{{0, 1}}},
{"\t\n\v\r\f\a", nil, "\t\n\v\r\f\a", []Group{{0, 6}}},
@ -473,7 +473,7 @@ var reTests = []struct {
{`[\t][\n][\v][\r][\f][\b]`, nil, "\t\n\v\r\f\b", []Group{{0, 6}}},
{`.*d`, nil, "abc\nabd", []Group{{4, 7}}},
{`(`, nil, "-", nil},
{`[\041]`, nil, `!`, []Group{{0, 1}}},
{`[\41]`, nil, `!`, []Group{{0, 1}}},
{`(?<!abc)(d.f)`, nil, `abcdefdof`, []Group{{6, 9}}},
{`[\w-]+`, nil, `laser_beam`, []Group{{0, 10}}},
{`M+`, []ReFlag{RE_CASE_INSENSITIVE}, `MMM`, []Group{{0, 3}}},
@ -489,25 +489,7 @@ var reTests = []struct {
{`[b-e]`, nil, `f`, []Group{}},
{`*?`, nil, `-`, nil},
{`a.+c`, nil, `abcabc`, []Group{{0, 6}}},
// Lazy quantifier tests
{`a.+?c`, nil, `abcabc`, []Group{{0, 3}, {3, 6}}},
{`ab*?bc`, []ReFlag{RE_CASE_INSENSITIVE}, `ABBBBC`, []Group{{0, 6}}},
{`ab+?bc`, []ReFlag{RE_CASE_INSENSITIVE}, `ABBC`, []Group{{0, 4}}},
{`ab??bc`, []ReFlag{RE_CASE_INSENSITIVE}, `ABBC`, []Group{{0, 4}}},
{`ab??bc`, []ReFlag{RE_CASE_INSENSITIVE}, `ABC`, []Group{{0, 3}}},
{`ab??bc`, []ReFlag{RE_CASE_INSENSITIVE}, `ABBBBC`, []Group{}},
{`ab??c`, []ReFlag{RE_CASE_INSENSITIVE}, `ABC`, []Group{{0, 3}}},
{`a.*?c`, []ReFlag{RE_CASE_INSENSITIVE}, `AXYZC`, []Group{{0, 5}}},
{`a.+?c`, []ReFlag{RE_CASE_INSENSITIVE}, `ABCABC`, []Group{{0, 3}, {3, 6}}},
{`a.*?c`, []ReFlag{RE_CASE_INSENSITIVE}, `ABCABC`, []Group{{0, 3}, {3, 6}}},
{`.*?\S *:`, nil, `xx:`, []Group{{0, 3}}},
{`a[ ]*? (\d+).*`, nil, `a 10`, []Group{{0, 6}}},
{`a[ ]*? (\d+).*`, nil, `a 10`, []Group{{0, 7}}},
{`"(?:\\"|[^"])*?"`, nil, `"\""`, []Group{{0, 4}}},
{`^.*?$`, nil, "one\ntwo\nthree", []Group{}},
{`a[^>]*?b`, nil, `a>b`, []Group{}},
{`^a*?$`, nil, `foo`, []Group{}},
{`a*?`, nil, `-`, nil}, // non-greedy operators are not supported
// Numeric range tests - this is a feature that I added, and doesn't exist
// in any other mainstream regex engine
@ -538,30 +520,6 @@ var reTests = []struct {
{`<389-400`, nil, `-`, nil},
{`<389-400>`, nil, `391`, []Group{{0, 3}}},
{`\b<1-10000>\b`, nil, `America declared independence in 1776.`, []Group{{33, 37}}},
{`\p{Tamil}+`, nil, `உயிரெழுத்து`, []Group{{0, 11}}}, // Each letter and matra is counted as a separate rune, so 'u', 'ya', 'e (matra), 'ra', 'e (matra)', 'zha', (oo (matra), 'tha', 'ith', 'tha', 'oo (matra)'.
{`\P{Tamil}+`, nil, `vowel=உயிரெழுத்து`, []Group{{0, 6}}},
{`\P`, nil, `உயிரெழுத்து`, nil},
{`\PM\pM*`, nil, `உயிரெழுத்து`, []Group{{0, 1}, {1, 3}, {3, 5}, {5, 7}, {7, 9}, {9, 11}}},
{`\pN+`, nil, `123abc456def`, []Group{{0, 3}, {6, 9}}},
{`\PN+`, nil, `123abc456def`, []Group{{3, 6}, {9, 12}}},
{`[\p{Greek}\p{Cyrillic}]`, nil, `ΣωШД`, []Group{{0, 1}, {1, 2}, {2, 3}, {3, 4}}},
{`(?<=\().*?(?=\))`, nil, `(abc)`, []Group{{1, 4}}},
{`((a|b)\2)`, nil, `aa`, []Group{{0, 2}}},
{`((a|b)\2)`, nil, `bb`, []Group{{0, 2}}},
{`((a|b)\2)`, nil, `ab`, []Group{}},
{`((a|b)\2)`, nil, `ba`, []Group{}},
{`((a|b)\2){3}`, nil, `aaaaaa`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `bbbbbb`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `bbaaaa`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `aabbaa`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `aaaabb`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `bbaabb`, []Group{{0, 6}}},
{`((a|b)\2){3}`, nil, `baabab`, []Group{}},
{`((a|b)\2){3}`, nil, `bbabab`, []Group{}},
}
var groupTests = []struct {
@ -623,37 +581,13 @@ var groupTests = []struct {
{`(bc+d$|ef*g.|h?i(j|k))`, nil, `bcdd`, []Match{}},
{`(bc+d$|ef*g.|h?i(j|k))`, nil, `reffgz`, []Match{[]Group{{1, 6}, {1, 6}}}},
{`(((((((((a)))))))))`, nil, `a`, []Match{[]Group{{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(((((((((a)))))))))\041`, nil, `a!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(((((((((a)))))))))\41`, nil, `a!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(.*)c(.*)`, nil, `abcde`, []Match{[]Group{{0, 5}, {0, 2}, {3, 5}}}},
{`\((.*), (.*)\)`, nil, `(a, b)`, []Match{[]Group{{0, 6}, {1, 2}, {4, 5}}}},
// Backreference tests
{`(abc)\1`, nil, `abcabc`, []Match{[]Group{{0, 6}, {0, 3}}}},
{`([a-c]+)\1`, nil, `abcabc`, []Match{[]Group{{0, 6}, {0, 3}}}},
{`([a-c]*)\1`, nil, `abcabc`, []Match{[]Group{{0, 6}, {0, 3}}, []Group{{6, 6}, {6, 6}}}},
{`^(.+)?B`, nil, `AB`, []Match{[]Group{{0, 2}, {0, 1}}}},
{`(a+).\1$`, nil, `aaaaa`, []Match{[]Group{{0, 5}, {0, 2}}}},
{`^(a+).\1$`, nil, `aaaa`, []Match{}},
{`(a)\1`, nil, `aa`, []Match{[]Group{{0, 2}, {0, 1}}}},
{`(a+)\1`, nil, `aa`, []Match{[]Group{{0, 2}, {0, 1}}}},
{`(a+)+\1`, nil, `aa`, []Match{[]Group{{0, 2}, {0, 1}}}},
{`(a).+\1`, nil, `aba`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`(a)ba*\1`, nil, `aba`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`(aa|a)a\1$`, nil, `aaa`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`(a|aa)a\1$`, nil, `aaa`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`(a+)a\1$`, nil, `aaa`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`([abc]*)\1`, nil, `abcabc`, []Match{[]Group{{0, 6}, {0, 3}}, []Group{{6, 6}, {6, 6}}}},
{`(a)(?:b)\1`, nil, `aba`, []Match{[]Group{{0, 3}, {0, 1}}}},
{`(a)(?:b)\1`, nil, `abb`, []Match{}},
{`(?:a)(b)\1`, nil, `aba`, []Match{}},
{`(?:a)(b)\1`, nil, `abb`, []Match{[]Group{{0, 3}, {1, 2}}}},
{`(?:(cat)|(dog))\2`, nil, `catdog`, []Match{}},
{`(?:a)\1`, nil, `aa`, nil},
{`((cat)|(dog)|(cow)|(bat))\4`, nil, `cowcow`, []Match{[]Group{{0, 6}, {0, 3}, {-1, -1}, {-1, -1}, {0, 3}, {-1, -1}}}},
{`(a|b)*\1`, nil, `abb`, []Match{[]Group{{0, 3}, {1, 2}}}},
{`(a|b)*\1`, nil, `aba`, []Match{}},
{`(a|b)*\1`, nil, `bab`, []Match{}},
{`(a|b)*\1`, nil, `baa`, []Match{[]Group{{0, 3}, {1, 2}}}},
// At this point, the python test suite has a bunch
// of backreference tests. Since my engine doesn't
// implement backreferences, I've skipped those tests.
{`(a)(b)c|ab`, nil, `ab`, []Match{[]Group{{0, 2}}}},
{`(a)+x`, nil, `aaax`, []Match{[]Group{{0, 4}, {2, 3}}}},
@ -702,7 +636,7 @@ var groupTests = []struct {
{`(bc+d$|ef*g.|h?i(j|k))`, []ReFlag{RE_CASE_INSENSITIVE}, `BCDD`, []Match{}},
{`(bc+d$|ef*g.|h?i(j|k))`, []ReFlag{RE_CASE_INSENSITIVE}, `reffgz`, []Match{[]Group{{1, 6}, {1, 6}}}},
{`(((((((((a)))))))))`, []ReFlag{RE_CASE_INSENSITIVE}, `A`, []Match{[]Group{{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(((((((((a)))))))))\041`, []ReFlag{RE_CASE_INSENSITIVE}, `A!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(((((((((a)))))))))\41`, []ReFlag{RE_CASE_INSENSITIVE}, `A!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
{`(.*)c(.*)`, []ReFlag{RE_CASE_INSENSITIVE}, `ABCDE`, []Match{[]Group{{0, 5}, {0, 2}, {3, 5}}}},
{`\((.*), (.*)\)`, []ReFlag{RE_CASE_INSENSITIVE}, `(A, B)`, []Match{[]Group{{0, 6}, {1, 2}, {4, 5}}}},
{`(a)(b)c|ab`, []ReFlag{RE_CASE_INSENSITIVE}, `AB`, []Match{[]Group{{0, 2}}}},
@ -754,18 +688,6 @@ var groupTests = []struct {
// {`(a|ab|c|bcd)*(d*)`, nil, `ababcd`, []Match{[]Group{{0, 6}, {3, 6}, {6, 6}}, []Group{{6, 6}, {6, 6}, {6, 6}}}},
// // Bug - this should give {0,3},{0,3},{0,0},{0,3},{3,3} but it gives {0,3},{0,2},{0,1},{1,2},{2,3}
// // {`((a*)(b|abc))(c*)`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 3}, {0, 0}, {0, 3}, {3, 3}}}},
// Lazy quantifier tests
{`a(?:b|c|d)+?(.)`, nil, `ace`, []Match{[]Group{{0, 3}, {2, 3}}}},
{`a(?:b|(c|e){1,2}?|d)+?(.)`, nil, `ace`, []Match{[]Group{{0, 3}, {1, 2}, {2, 3}}}},
{`(?<!-):(.*?)(?<!-):`, nil, `a:bc-:de:f`, []Match{[]Group{{1, 9}, {2, 8}}}},
{`(?<!\\):(.*?)(?<!\\):`, nil, `a:bc\:de:f`, []Match{[]Group{{1, 9}, {2, 8}}}},
{`(?<!\?)'(.*?)(?<!\?)'`, nil, `a'bc?'de'f`, []Match{[]Group{{1, 9}, {2, 8}}}},
{`.*?x\s*\z(.*)`, []ReFlag{RE_MULTILINE, RE_SINGLE_LINE}, "xx\nx\n", []Match{[]Group{{0, 5}, {5, 5}}}},
{`.*?x\s*\z(.*)`, []ReFlag{RE_MULTILINE}, "xx\nx\n", []Match{[]Group{{3, 5}, {5, 5}}}},
{`^([ab]*?)(?=(b)?)c`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 2}, {-1, -1}}}},
{`^([ab]*?)(?!(b))c`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 2}, {-1, -1}}}},
{`^([ab]*?)(?<!(a))c`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 2}, {-1, -1}}}},
}
func TestFind(t *testing.T) {
@ -870,24 +792,23 @@ func TestFindSubmatch(t *testing.T) {
if test.result != nil {
panic(err)
}
} else {
match, err := regComp.FindSubmatch(test.str)
if err != nil {
if len(test.result) != 0 {
t.Errorf("Wanted %v got no match\n", test.result[0])
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", match)
}
match, err := regComp.FindSubmatch(test.str)
if err != nil {
if len(test.result) != 0 {
t.Errorf("Wanted %v got no match\n", test.result[0])
}
for i := range match {
if match[i].IsValid() {
if test.result[0][i] != match[i] {
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
}
} else {
if i < len(test.result) && test.result[0][i].IsValid() {
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", match)
}
for i := range match {
if match[i].IsValid() {
if test.result[0][i] != match[i] {
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
}
} else {
if i < len(test.result) && test.result[0][i].IsValid() {
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
}
}
}
@ -902,22 +823,10 @@ func TestFindStringSubmatch(t *testing.T) {
if test.result != nil {
panic(err)
}
} else {
matchStr := regComp.FindStringSubmatch(test.str)
if matchStr == nil {
if len(test.result) != 0 {
expectedStr := funcMap(test.result[0], func(g Group) string {
if g.IsValid() {
return test.str[g.StartIdx:g.EndIdx]
} else {
return ""
}
})
t.Errorf("Wanted %v got no match\n", expectedStr)
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", matchStr)
} else {
}
matchStr := regComp.FindStringSubmatch(test.str)
if matchStr == nil {
if len(test.result) != 0 {
expectedStr := funcMap(test.result[0], func(g Group) string {
if g.IsValid() {
return test.str[g.StartIdx:g.EndIdx]
@ -925,15 +834,26 @@ func TestFindStringSubmatch(t *testing.T) {
return ""
}
})
for i, groupStr := range matchStr {
if groupStr == "" {
if i < len(expectedStr) && expectedStr[i] != "" {
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
}
} else {
if expectedStr[i] != groupStr {
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
}
t.Errorf("Wanted %v got no match\n", expectedStr)
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", matchStr)
} else {
expectedStr := funcMap(test.result[0], func(g Group) string {
if g.IsValid() {
return test.str[g.StartIdx:g.EndIdx]
} else {
return ""
}
})
for i, groupStr := range matchStr {
if groupStr == "" {
if i < len(expectedStr) && expectedStr[i] != "" {
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
}
} else {
if expectedStr[i] != groupStr {
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
}
}
}
@ -950,24 +870,10 @@ func TestFindAllStringSubmatch(t *testing.T) {
if test.result != nil {
panic(err)
}
} else {
matchStrs := regComp.FindAllStringSubmatch(test.str)
if matchStrs == nil {
if len(test.result) != 0 {
expectedStrs := funcMap(test.result, func(m Match) []string {
return funcMap(m, func(g Group) string {
if g.IsValid() {
return test.str[g.StartIdx:g.EndIdx]
} else {
return ""
}
})
})
t.Errorf("Wanted %v got no match\n", expectedStrs)
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", matchStrs)
} else {
}
matchStrs := regComp.FindAllStringSubmatch(test.str)
if matchStrs == nil {
if len(test.result) != 0 {
expectedStrs := funcMap(test.result, func(m Match) []string {
return funcMap(m, func(g Group) string {
if g.IsValid() {
@ -977,16 +883,29 @@ func TestFindAllStringSubmatch(t *testing.T) {
}
})
})
for i, matchStr := range matchStrs {
for j, groupStr := range matchStr {
if groupStr == "" {
if j < len(expectedStrs[i]) && expectedStrs[i][j] != "" {
t.Errorf("Wanted %v Got %v\n", expectedStrs, matchStrs)
}
} else {
if expectedStrs[i][j] != groupStr {
t.Errorf("Wanted %v Got %v\n", expectedStrs, matchStrs)
}
t.Errorf("Wanted %v got no match\n", expectedStrs)
}
} else if len(test.result) == 0 {
t.Errorf("Wanted no match got %v\n", matchStrs)
} else {
expectedStrs := funcMap(test.result, func(m Match) []string {
return funcMap(m, func(g Group) string {
if g.IsValid() {
return test.str[g.StartIdx:g.EndIdx]
} else {
return ""
}
})
})
for i, matchStr := range matchStrs {
for j, groupStr := range matchStr {
if groupStr == "" {
if j < len(expectedStrs[i]) && expectedStrs[i][j] != "" {
t.Errorf("Wanted %v Got %v\n", expectedStrs, matchStrs)
}
} else {
if expectedStrs[i][j] != groupStr {
t.Errorf("Wanted %v Got %v\n", expectedStrs, matchStrs)
}
}
}
@ -1004,18 +923,17 @@ func TestFindAllSubmatch(t *testing.T) {
if test.result != nil {
panic(err)
}
} else {
matchIndices := regComp.FindAllSubmatch(test.str)
for i := range matchIndices {
for j := range matchIndices[i] {
if matchIndices[i][j].IsValid() {
if test.result[i][j] != matchIndices[i][j] {
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
}
} else {
if i < len(test.result) && j < len(test.result[i]) && test.result[i][j].IsValid() {
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
}
}
matchIndices := regComp.FindAllSubmatch(test.str)
for i := range matchIndices {
for j := range matchIndices[i] {
if matchIndices[i][j].IsValid() {
if test.result[i][j] != matchIndices[i][j] {
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
}
} else {
if i < len(test.result) && j < len(test.result[i]) && test.result[i][j].IsValid() {
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
}
}
}

@ -4,5 +4,4 @@
Ideas for flags:
-m <num> : Print <num>th match (-m 1 = first match, -m 2 = second match)
-g <num> : Print the <num>th group
-r : Specify a directory instead of a file, reads recursively
4. Refactor code for flags - make each flag's code a function, which modifies the result of findAllMatches

Loading…
Cancel
Save