Implement PCRE Matching (prefer left-branch) #2
@@ -1,7 +1,6 @@
|
|||||||
package regex
|
package regex
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"container/heap"
|
|
||||||
"fmt"
|
"fmt"
|
||||||
"slices"
|
"slices"
|
||||||
"sort"
|
"sort"
|
||||||
@@ -267,16 +266,15 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
|
|||||||
// chosen as the match for the entire string.
|
// chosen as the match for the entire string.
|
||||||
// This allows us to pick the longest possible match (which is how greedy matching works).
|
// This allows us to pick the longest possible match (which is how greedy matching works).
|
||||||
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
|
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
|
||||||
tempIndices := newMatch(numGroups + 1)
|
// tempIndices := newMatch(numGroups + 1)
|
||||||
|
|
||||||
foundPath := false
|
// foundPath := false
|
||||||
startIdx := offset
|
//startIdx := offset
|
||||||
endIdx := offset
|
//endIdx := offset
|
||||||
currentStates := &priorityQueue{}
|
currentStates := make([]*nfaState, 0)
|
||||||
heap.Init(currentStates)
|
// tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
|
||||||
tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
|
|
||||||
i := offset // Index in string
|
i := offset // Index in string
|
||||||
startingFrom := i // Store starting index
|
//startingFrom := i // Store starting index
|
||||||
|
|
||||||
// If the first state is an assertion, makes sure the assertion
|
// If the first state is an assertion, makes sure the assertion
|
||||||
// is true before we do _anything_ else.
|
// is true before we do _anything_ else.
|
||||||
@@ -287,214 +285,266 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Increment until we hit a character matching the start state (assuming not 0-state)
|
// Increment until we hit a character matching the start state (assuming not 0-state)
|
||||||
if start.isEmpty == false {
|
// if start.isEmpty == false {
|
||||||
for i < len(str) && !start.contentContains(str, i) {
|
// for i < len(str) && !start.contentContains(str, i) {
|
||||||
i++
|
|
||||||
}
|
|
||||||
startIdx = i
|
|
||||||
startingFrom = i
|
|
||||||
i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
|
||||||
}
|
|
||||||
|
|
||||||
start.threadGroups = newMatch(numGroups + 1)
|
|
||||||
// Check if the start state begins a group - if so, add the start index to our list
|
|
||||||
if start.groupBegin {
|
|
||||||
start.threadGroups[start.groupNum].StartIdx = i
|
|
||||||
// tempIndices[start.groupNum].startIdx = i
|
|
||||||
}
|
|
||||||
|
|
||||||
start.threadSP = i
|
|
||||||
heap.Push(currentStates, newPriorQueueItem(start))
|
|
||||||
// Main loop
|
|
||||||
for currentStates.Len() > 0 {
|
|
||||||
currentState := heap.Pop(currentStates)
|
|
||||||
foundPath = false
|
|
||||||
|
|
||||||
zeroStates := make([]*nfaState, 0)
|
|
||||||
// Keep taking zero-states, until there are no more left to take
|
|
||||||
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
|
||||||
topStateItem := currentStates.peek()
|
|
||||||
topState := topStateItem.(*priorQueueItem).state
|
|
||||||
zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
|
||||||
tempStates = append(tempStates, zeroStates...)
|
|
||||||
num_appended := 0
|
|
||||||
for isZero == true {
|
|
||||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
|
||||||
tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
|
||||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if isZero == true {
|
|
||||||
currentStates.Pop()
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, state := range tempStates {
|
|
||||||
heap.Push(currentStates, newPriorQueueItem(state))
|
|
||||||
}
|
|
||||||
tempStates = nil
|
|
||||||
|
|
||||||
// Take any transitions corresponding to current character
|
|
||||||
numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
|
||||||
assertionFailed := false // Whether or not an assertion failed for this round
|
|
||||||
lastStateInList := false // Whether or not a last state was in our list of states
|
|
||||||
var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
|
|
||||||
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
|
|
||||||
for numStatesMatched == 0 && lastStateInList == false {
|
|
||||||
if currentStates.Len() == 0 {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
stateItem := heap.Pop(currentStates)
|
|
||||||
state := stateItem.(*priorQueueItem).state
|
|
||||||
matches, numMatches := state.matchesFor(str, i)
|
|
||||||
if numMatches > 0 {
|
|
||||||
numStatesMatched++
|
|
||||||
tempStates = append([]*nfaState(nil), matches...)
|
|
||||||
foundPath = true
|
|
||||||
for _, m := range matches {
|
|
||||||
if m.threadGroups == nil {
|
|
||||||
m.threadGroups = newMatch(numGroups + 1)
|
|
||||||
}
|
|
||||||
m.threadSP = state.threadSP + 1
|
|
||||||
copy(m.threadGroups, state.threadGroups)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if numMatches < 0 {
|
|
||||||
assertionFailed = true
|
|
||||||
}
|
|
||||||
if state.isLast {
|
|
||||||
if state.isLookaround() {
|
|
||||||
lastLookaroundInList = true
|
|
||||||
}
|
|
||||||
lastStateInList = true
|
|
||||||
lastStatePtr = state
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
|
||||||
// If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
|
|
||||||
// state. The explanation below is my attempt to explain this behavior.
|
|
||||||
// If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
|
|
||||||
//
|
|
||||||
// One of the states in our list was a last state and a lookaround. In this case, we
|
|
||||||
// don't abort upon failure of the assertion, because we have found
|
|
||||||
// another path to a final state.
|
|
||||||
// Even if the last state _was_ an assertion, we can use the previously
|
|
||||||
// saved indices to find a match.
|
|
||||||
if lastLookaroundInList {
|
|
||||||
break
|
|
||||||
} else {
|
|
||||||
if i == startingFrom {
|
|
||||||
i++
|
|
||||||
}
|
|
||||||
return false, []Group{}, i
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Check if we can find a state in our list that is:
|
|
||||||
// a. A last-state
|
|
||||||
// b. Empty
|
|
||||||
// c. Doesn't assert anything
|
|
||||||
for _, stateItem := range *currentStates {
|
|
||||||
s := stateItem.state
|
|
||||||
if s.isLast && s.isEmpty && s.assert == noneAssert {
|
|
||||||
lastStatePtr = s
|
|
||||||
lastStateInList = true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
|
||||||
for j := 1; j < numGroups+1; j++ {
|
|
||||||
tempIndices[j] = lastStatePtr.threadGroups[j]
|
|
||||||
}
|
|
||||||
endIdx = i
|
|
||||||
tempIndices[0] = Group{startIdx, endIdx}
|
|
||||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
|
|
||||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
|
||||||
} else {
|
|
||||||
return true, tempIndices, tempIndices[0].EndIdx
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check if we can find a zero-length match
|
|
||||||
if foundPath == false {
|
|
||||||
currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
|
|
||||||
return item.state
|
|
||||||
})
|
|
||||||
if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
|
|
||||||
if tempIndices[0].IsValid() == false {
|
|
||||||
tempIndices[0] = Group{startIdx, startIdx}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// If we haven't moved in the string, increment the counter by 1
|
|
||||||
// to ensure we don't keep trying the same string over and over.
|
|
||||||
// if i == startingFrom {
|
|
||||||
startIdx++
|
|
||||||
// i++
|
// i++
|
||||||
// }
|
// }
|
||||||
if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
|
// startIdx = i
|
||||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
// startingFrom = i
|
||||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
// i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
||||||
|
// }
|
||||||
|
|
||||||
|
// start.threadGroups = newMatch(numGroups + 1)
|
||||||
|
// Check if the start state begins a group - if so, add the start index to our list
|
||||||
|
//if start.groupBegin {
|
||||||
|
// start.threadGroups[start.groupNum].StartIdx = i
|
||||||
|
// tempIndices[start.groupNum].startIdx = i
|
||||||
|
//}
|
||||||
|
|
||||||
|
start.threadSP = i
|
||||||
|
currentStates = append(currentStates, start)
|
||||||
|
var foundMatch bool
|
||||||
|
// Main loop
|
||||||
|
for len(currentStates) > 0 {
|
||||||
|
currentState, _ := pop(¤tStates)
|
||||||
|
idx := currentState.threadSP
|
||||||
|
foundMatch = false
|
||||||
|
|
||||||
|
if currentState.threadGroups == nil {
|
||||||
|
currentState.threadGroups = newMatch(numGroups + 1)
|
||||||
|
currentState.threadGroups[0].StartIdx = idx
|
||||||
|
}
|
||||||
|
if currentState.groupBegin {
|
||||||
|
currentState.threadGroups[currentState.groupNum].StartIdx = idx
|
||||||
|
} else if currentState.groupEnd {
|
||||||
|
currentState.threadGroups[currentState.groupNum].EndIdx = idx
|
||||||
|
} else if currentState.isKleene {
|
||||||
|
// Append the
|
||||||
|
} else if currentState.isAlternation {
|
||||||
|
rightState := currentState.rightState
|
||||||
|
rightState.threadGroups = currentState.threadGroups
|
||||||
|
rightState.threadSP = currentState.threadSP
|
||||||
|
currentStates = append(currentStates, currentState.rightState)
|
||||||
|
leftState := currentState.leftState
|
||||||
|
leftState.threadGroups = currentState.threadGroups
|
||||||
|
leftState.threadSP = currentState.threadSP
|
||||||
|
currentStates = append(currentStates, currentState.leftState)
|
||||||
|
continue
|
||||||
|
} else if currentState.contentContains(str, idx) {
|
||||||
|
foundMatch = true
|
||||||
|
allMatches := make([]*nfaState, 0)
|
||||||
|
for _, v := range currentState.transitions {
|
||||||
|
allMatches = append(allMatches, v...)
|
||||||
|
}
|
||||||
|
slices.Reverse(allMatches)
|
||||||
|
for _, m := range allMatches {
|
||||||
|
m.threadGroups = currentState.threadGroups
|
||||||
|
if currentState.assert == noneAssert {
|
||||||
|
m.threadSP = idx + 1
|
||||||
} else {
|
} else {
|
||||||
return true, tempIndices, tempIndices[0].EndIdx
|
m.threadSP = idx
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return false, []Group{}, startIdx
|
currentStates = append(currentStates, allMatches...)
|
||||||
}
|
|
||||||
currentStates = &priorityQueue{}
|
|
||||||
slices.Reverse(tempStates)
|
|
||||||
for _, state := range tempStates {
|
|
||||||
heap.Push(currentStates, newPriorQueueItem(state))
|
|
||||||
}
|
|
||||||
tempStates = nil
|
|
||||||
|
|
||||||
i++
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
if currentState.isLast && foundMatch { // Last state reached
|
||||||
// This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
currentState.threadGroups[0].EndIdx = idx + 1
|
||||||
if currentStates.Len() > 0 {
|
return true, currentState.threadGroups, idx + 1
|
||||||
topStateItem := currentStates.peek()
|
|
||||||
topState := topStateItem.(*priorQueueItem).state
|
|
||||||
zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
|
||||||
tempStates = append(tempStates, zeroStates...)
|
|
||||||
num_appended := 0 // Number of unique states addded to tempStates
|
|
||||||
for isZero == true {
|
|
||||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
|
||||||
tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
|
||||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, state := range tempStates {
|
|
||||||
heap.Push(currentStates, newPriorQueueItem(state))
|
|
||||||
}
|
|
||||||
tempStates = nil
|
|
||||||
|
|
||||||
for _, stateItem := range *currentStates {
|
|
||||||
state := stateItem.state
|
|
||||||
// Only add the match if the start index is in bounds. If the state has an assertion,
|
|
||||||
// make sure the assertion checks out.
|
|
||||||
if state.isLast && i <= len(str) {
|
|
||||||
if state.assert == noneAssert || state.checkAssertion(str, i) {
|
|
||||||
for j := 1; j < numGroups+1; j++ {
|
|
||||||
tempIndices[j] = state.threadGroups[j]
|
|
||||||
}
|
|
||||||
endIdx = i
|
|
||||||
tempIndices[0] = Group{startIdx, endIdx}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
return false, []Group{}, i + 1
|
||||||
|
// zeroStates := make([]*nfaState, 0)
|
||||||
if tempIndices.numValidGroups() > 0 {
|
// // Keep taking zero-states, until there are no more left to take
|
||||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
// // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
||||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
// topStateItem := currentStates.peek()
|
||||||
} else {
|
// topState := topStateItem.(*priorQueueItem).state
|
||||||
return true, tempIndices, tempIndices[0].EndIdx
|
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||||
}
|
// tempStates = append(tempStates, zeroStates...)
|
||||||
}
|
// num_appended := 0
|
||||||
if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
// for isZero == true {
|
||||||
startIdx++
|
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||||
}
|
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||||
return false, []Group{}, startIdx
|
// if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||||
|
// break
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// if isZero == true {
|
||||||
|
// currentStates.Pop()
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// for _, state := range tempStates {
|
||||||
|
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||||
|
// }
|
||||||
|
// tempStates = nil
|
||||||
|
//
|
||||||
|
// // Take any transitions corresponding to current character
|
||||||
|
// numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
||||||
|
// assertionFailed := false // Whether or not an assertion failed for this round
|
||||||
|
// lastStateInList := false // Whether or not a last state was in our list of states
|
||||||
|
// var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
|
||||||
|
// lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
|
||||||
|
// for numStatesMatched == 0 && lastStateInList == false {
|
||||||
|
// if currentStates.Len() == 0 {
|
||||||
|
// break
|
||||||
|
// }
|
||||||
|
// stateItem := heap.Pop(currentStates)
|
||||||
|
// state := stateItem.(*priorQueueItem).state
|
||||||
|
// matches, numMatches := state.matchesFor(str, i)
|
||||||
|
// if numMatches > 0 {
|
||||||
|
// numStatesMatched++
|
||||||
|
// tempStates = append([]*nfaState(nil), matches...)
|
||||||
|
// foundPath = true
|
||||||
|
// for _, m := range matches {
|
||||||
|
// if m.threadGroups == nil {
|
||||||
|
// m.threadGroups = newMatch(numGroups + 1)
|
||||||
|
// }
|
||||||
|
// m.threadSP = state.threadSP + 1
|
||||||
|
// copy(m.threadGroups, state.threadGroups)
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// if numMatches < 0 {
|
||||||
|
// assertionFailed = true
|
||||||
|
// }
|
||||||
|
// if state.isLast {
|
||||||
|
// if state.isLookaround() {
|
||||||
|
// lastLookaroundInList = true
|
||||||
|
// }
|
||||||
|
// lastStateInList = true
|
||||||
|
// lastStatePtr = state
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
||||||
|
// // If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
|
||||||
|
// // state. The explanation below is my attempt to explain this behavior.
|
||||||
|
// // If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
|
||||||
|
// //
|
||||||
|
// // One of the states in our list was a last state and a lookaround. In this case, we
|
||||||
|
// // don't abort upon failure of the assertion, because we have found
|
||||||
|
// // another path to a final state.
|
||||||
|
// // Even if the last state _was_ an assertion, we can use the previously
|
||||||
|
// // saved indices to find a match.
|
||||||
|
// if lastLookaroundInList {
|
||||||
|
// break
|
||||||
|
// } else {
|
||||||
|
// if i == startingFrom {
|
||||||
|
// i++
|
||||||
|
// }
|
||||||
|
// return false, []Group{}, i
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// // Check if we can find a state in our list that is:
|
||||||
|
// // a. A last-state
|
||||||
|
// // b. Empty
|
||||||
|
// // c. Doesn't assert anything
|
||||||
|
// for _, stateItem := range *currentStates {
|
||||||
|
// s := stateItem.state
|
||||||
|
// if s.isLast && s.isEmpty && s.assert == noneAssert {
|
||||||
|
// lastStatePtr = s
|
||||||
|
// lastStateInList = true
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
||||||
|
// for j := 1; j < numGroups+1; j++ {
|
||||||
|
// tempIndices[j] = lastStatePtr.threadGroups[j]
|
||||||
|
// }
|
||||||
|
// endIdx = i
|
||||||
|
// tempIndices[0] = Group{startIdx, endIdx}
|
||||||
|
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||||
|
// } else {
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// // Check if we can find a zero-length match
|
||||||
|
// if foundPath == false {
|
||||||
|
// currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
|
||||||
|
// return item.state
|
||||||
|
// })
|
||||||
|
// if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
|
||||||
|
// if tempIndices[0].IsValid() == false {
|
||||||
|
// tempIndices[0] = Group{startIdx, startIdx}
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// // If we haven't moved in the string, increment the counter by 1
|
||||||
|
// // to ensure we don't keep trying the same string over and over.
|
||||||
|
// // if i == startingFrom {
|
||||||
|
// startIdx++
|
||||||
|
// // i++
|
||||||
|
// // }
|
||||||
|
// if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
|
||||||
|
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||||
|
// } else {
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// return false, []Group{}, startIdx
|
||||||
|
// }
|
||||||
|
// currentStates = &priorityQueue{}
|
||||||
|
// slices.Reverse(tempStates)
|
||||||
|
// for _, state := range tempStates {
|
||||||
|
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||||
|
// }
|
||||||
|
// tempStates = nil
|
||||||
|
//
|
||||||
|
// i++
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
||||||
|
// // This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
||||||
|
//
|
||||||
|
// if currentStates.Len() > 0 {
|
||||||
|
// topStateItem := currentStates.peek()
|
||||||
|
// topState := topStateItem.(*priorQueueItem).state
|
||||||
|
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
|
||||||
|
// tempStates = append(tempStates, zeroStates...)
|
||||||
|
// num_appended := 0 // Number of unique states addded to tempStates
|
||||||
|
// for isZero == true {
|
||||||
|
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||||
|
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
|
||||||
|
// if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||||
|
// break
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// for _, state := range tempStates {
|
||||||
|
// heap.Push(currentStates, newPriorQueueItem(state))
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// tempStates = nil
|
||||||
|
//
|
||||||
|
// for _, stateItem := range *currentStates {
|
||||||
|
// state := stateItem.state
|
||||||
|
// // Only add the match if the start index is in bounds. If the state has an assertion,
|
||||||
|
// // make sure the assertion checks out.
|
||||||
|
// if state.isLast && i <= len(str) {
|
||||||
|
// if state.assert == noneAssert || state.checkAssertion(str, i) {
|
||||||
|
// for j := 1; j < numGroups+1; j++ {
|
||||||
|
// tempIndices[j] = state.threadGroups[j]
|
||||||
|
// }
|
||||||
|
// endIdx = i
|
||||||
|
// tempIndices[0] = Group{startIdx, endIdx}
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// if tempIndices.numValidGroups() > 0 {
|
||||||
|
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||||
|
// } else {
|
||||||
|
// return true, tempIndices, tempIndices[0].EndIdx
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
||||||
|
//
|
||||||
|
// startIdx++
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// return false, []Group{}, startIdx
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user