You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1124 lines
46 KiB
Go
1124 lines
46 KiB
Go
package regex
|
|
|
|
import (
|
|
"fmt"
|
|
"slices"
|
|
"strconv"
|
|
"unicode"
|
|
)
|
|
|
|
// Holds a list of all characters that are _not_ matched by the dot metacharacter
|
|
var notDotChars []rune
|
|
|
|
// A Reg represents the result of compiling a regular expression. It contains
|
|
// the startState of the NFA representation of the regex, and the number of capturing
|
|
// groups in the regex.
|
|
type Reg struct {
|
|
start *nfaState
|
|
numGroups int
|
|
}
|
|
|
|
const concatRune rune = 0xF0001
|
|
|
|
// Flags for shuntingYard - control its behavior
|
|
type ReFlag int
|
|
|
|
const (
|
|
RE_NO_FLAGS ReFlag = iota
|
|
RE_CASE_INSENSITIVE // Case insensitive matching
|
|
RE_MULTILINE // '^' and '$' assert at start and end of _line_, rather than start and end of input string
|
|
RE_SINGLE_LINE // Dot metacharacter matches newline characters.
|
|
)
|
|
|
|
func isOperator(c rune) bool {
|
|
if c == '+' || c == '?' || c == '*' || c == '|' || c == concatRune {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
/* priority returns the priority of the given operator */
|
|
func priority(op rune) int {
|
|
precedence := []rune{'|', concatRune, '+', '*', '?'}
|
|
return slices.Index(precedence, op)
|
|
}
|
|
|
|
// Returns the POSIX character class represented by the given string.
|
|
// The given string must be of the form:
|
|
//
|
|
// 'blah1:]blah2'
|
|
//
|
|
// In order to be a _syntactically_ valid POSIX class.
|
|
// Whether or not such a class actually exists is not relevant to this function, it just
|
|
// parses and returns 'blah1'.
|
|
// For example, if the regex was something like '[[:digit:]]', the caller must parse through the opening
|
|
// brackets and the colon, and call this function with the remainder.
|
|
//
|
|
// If the given string represents a syntactically valid POSIX class, the second parameter is true.
|
|
// Otherwise, it's false.
|
|
func getPOSIXClass(str []rune) (bool, string) {
|
|
i := 0
|
|
rtv := ""
|
|
for i < len(str) && (str[i] != ':' && str[i] != rbracketRune) {
|
|
rtv += string(str[i])
|
|
i++
|
|
}
|
|
if i >= (len(str) - 1) { // We need to be atleast 1 character short, because the closing bracket must follow
|
|
return false, ""
|
|
}
|
|
if str[i] != ':' { // The POSIX class must end with a colon and a closing bracket. It cannot end with a closing bracket first.
|
|
return false, ""
|
|
}
|
|
if str[i+1] != rbracketRune {
|
|
return false, ""
|
|
}
|
|
return true, rtv
|
|
}
|
|
|
|
// Stores whether the case-insensitive flag has been enabled.
|
|
var caseInsensitive bool
|
|
|
|
// Stores whether the multiline flag has been enabled.
|
|
// In multi-line mode, '^' and '$' assert position at the start and
|
|
// end of a _line_ rather than the entire input.
|
|
var multilineMode bool
|
|
|
|
/*
|
|
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
|
|
The primary benefit of this is getting rid of parentheses.
|
|
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
|
|
An error can be returned for a multitude of reasons - the reason is specified in the error string.
|
|
The function also takes in 0 or more flags, which control the behavior of the parser.
|
|
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
|
|
*/
|
|
func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
|
|
// Check which flags are enabled
|
|
|
|
caseInsensitive = false
|
|
multilineMode = false
|
|
if slices.Contains(flags, RE_MULTILINE) {
|
|
multilineMode = true
|
|
}
|
|
if slices.Contains(flags, RE_SINGLE_LINE) {
|
|
notDotChars = []rune{}
|
|
} else {
|
|
notDotChars = []rune{'\n'}
|
|
}
|
|
if slices.Contains(flags, RE_CASE_INSENSITIVE) {
|
|
caseInsensitive = true
|
|
}
|
|
|
|
re_postfix := make([]rune, 0)
|
|
// Convert the string to a slice of runes to allow iteration through it
|
|
re_runes_orig := []rune(re) // This is the rune slice before the first parsing loop (which detects and replaces numeric ranges)
|
|
re_runes := make([]rune, 0)
|
|
// The following checks are performed here:
|
|
// 1. Check for numeric range. If we are at the start of a numeric range,
|
|
// skip to end and construct the equivalent regex for the range.
|
|
// The reason this is outside the loop below, is that it actually modifies
|
|
// the given regex (we 'cut' the numeric range and 'paste' an equivalent regex).
|
|
// It also makes the overall parsing easier, since I don't have to worry about the numeric range
|
|
// anymore.
|
|
// Eventually, I might be able to add it into the main parsing loop, to reduce the time
|
|
// complexity.
|
|
// A numeric range has the syntax: <num1-num2>. Ir matches all numbers in this range.
|
|
//
|
|
// 2. Check for non-capturing groups. The LPAREN of a non-capturing group looks like this: '(?:'
|
|
// I take this out, and put in a special character - NONCAPLPAREN_CHAR.
|
|
//
|
|
// 3. Another check is made for unescaped brackets - opening brackets are replaced with
|
|
// LBRACKET and closing brackets are replaced with RBRACKET.
|
|
//
|
|
// 4. Check for escaped backslashes. Replace these with the BACKSLASH
|
|
// metacharacter. Later, in thompson(), these will be converted back. This avoids
|
|
// confusion in detecting whether a character is escaped eg. detecting
|
|
// whether '\\[a]' has an escaped opening bracket (it doesn't).
|
|
//
|
|
// 5. Check for non-greedy operators. These are not supported at the moment, so an error
|
|
// must be thrown if the user attempts to use a non-greedy operator.
|
|
for i := 0; i < len(re_runes_orig); i++ {
|
|
c := re_runes_orig[i]
|
|
if c == '<' && (i == 0 || (re_runes_orig[i-1] != '\\' && re_runes_orig[i-1] != '?')) {
|
|
i++ // Step over opening angle bracket
|
|
tmpStr := ""
|
|
hyphenFound := false
|
|
for i < len(re_runes_orig) && re_runes_orig[i] != '>' {
|
|
if !unicode.IsDigit(re_runes_orig[i]) {
|
|
if re_runes_orig[i] != '-' || (hyphenFound) {
|
|
return nil, fmt.Errorf("invalid numeric range")
|
|
}
|
|
}
|
|
if re_runes_orig[i] == '-' {
|
|
hyphenFound = true
|
|
}
|
|
tmpStr += string(re_runes_orig[i])
|
|
i++
|
|
}
|
|
// End of string reached and last character doesn't close the range
|
|
if i == len(re_runes_orig) && re_runes_orig[len(re_runes_orig)-1] != '>' {
|
|
return nil, fmt.Errorf("numeric range not closed")
|
|
}
|
|
if len(tmpStr) == 0 {
|
|
return nil, fmt.Errorf("empty numeric range")
|
|
}
|
|
// Closing bracket will be skipped when the loop variable increments
|
|
var rangeStart int
|
|
var rangeEnd int
|
|
fmt.Sscanf(tmpStr, "%d-%d", &rangeStart, &rangeEnd)
|
|
regex, err := range2regex(rangeStart, rangeEnd)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
re_runes = append(re_runes, []rune(regex)...)
|
|
} else if c == '(' && i < len(re_runes_orig)-2 && re_runes_orig[i+1] == '?' && re_runes_orig[i+2] == ':' {
|
|
re_runes = append(re_runes, nonCapLparenRune)
|
|
i += 2
|
|
} else if c == '\\' && i < len(re_runes_orig)-1 && re_runes_orig[i+1] == '\\' { // Escaped backslash
|
|
re_runes = append(re_runes, escBackslashRune)
|
|
i++
|
|
} else if c == '[' && (i == 0 || re_runes[len(re_runes)-1] != '\\') {
|
|
re_runes = append(re_runes, lbracketRune)
|
|
continue
|
|
} else if c == ']' && (i == 0 || re_runes[len(re_runes)-1] != '\\') {
|
|
re_runes = append(re_runes, rbracketRune)
|
|
continue
|
|
} else if slices.Contains([]rune{'+', '*', '?'}, c) && (i < len(re_runes_orig)-1 && re_runes_orig[i+1] == '?') {
|
|
return nil, fmt.Errorf("non-greedy operators are not supported")
|
|
} else {
|
|
re_runes = append(re_runes, c)
|
|
}
|
|
}
|
|
|
|
/* Add concatenation operators.
|
|
Only add a concatenation operator between two characters if both the following conditions are met:
|
|
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
|
|
a. This makes sense, because these operators can't be _concatenated_ with anything else.
|
|
2. The second character isn't a 'closing operator' - one that applies to something before it
|
|
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
|
|
Caveats:
|
|
1. Don't mess with anything inside brackets - character class
|
|
2. Don't mess with anything inside braces - numeric repetition
|
|
3. Don't mess with any lookarounds.
|
|
*/
|
|
i := 0
|
|
for i < len(re_runes) {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
if re_runes[i] == lbracketRune && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped.
|
|
toAppend := make([]rune, 0) // Holds all the runes in the current character class
|
|
|
|
i++ // Skip past LBRACKET, because it was already added
|
|
if i >= len(re_runes) { // Sanity check before we start
|
|
return nil, fmt.Errorf("opening bracket without closing bracket")
|
|
}
|
|
|
|
for re_runes[i] != rbracketRune || i == 0 || re_runes[i-1] == '\\' { // Skip all characters inside _unescaped_ brackets (we are _not_ at a closing bracket, or if we are, the previous character is a backslash)
|
|
// Make sure we haven't exceeded the length of the string. If we did, then the regex doesn't actually have a closing bracket and we should throw an error.
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("opening bracket without closing bracket")
|
|
}
|
|
|
|
if re_runes[i] == lbracketRune && re_runes[i+1] == ':' { // POSIX character class
|
|
toAppend = append(toAppend, re_runes[i])
|
|
i++
|
|
toAppend = append(toAppend, re_runes[i])
|
|
i++
|
|
for i < len(re_runes)-1 && re_runes[i] != ':' && re_runes[i] != ']' {
|
|
toAppend = append(toAppend, re_runes[i])
|
|
i++
|
|
}
|
|
if i >= len(re_runes)-1 && re_runes[i] != ':' {
|
|
return nil, fmt.Errorf("unable to parse what looks like a POSIX character class")
|
|
}
|
|
toAppend = append(toAppend, re_runes[i])
|
|
i++
|
|
}
|
|
if re_runes[i] == '-' && (i > 0 && re_runes[i-1] != '\\') && (i < len(re_runes)-1 && re_runes[i+1] != rbracketRune) { // Unescaped hyphen, that has some character (not a RBRACKET) after it - This represents a character range, so we replace with CHAR_RANGE. This metacharacter will be used later on to construct the range
|
|
re_runes[i] = charRangeRune
|
|
}
|
|
toAppend = append(toAppend, re_runes[i])
|
|
i++
|
|
}
|
|
// Add in the RBRACKET
|
|
toAppend = append(toAppend, rbracketRune)
|
|
re_postfix = append(re_postfix, toAppend...)
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
|
|
i++ // Skip opening brace
|
|
for i < len(re_runes) && re_runes[i] != '}' {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
}
|
|
if i == len(re_runes) {
|
|
return nil, fmt.Errorf("invalid numeric specifier")
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
|
|
}
|
|
if i < len(re_runes)-3 && string(re_runes[i+1:i+4]) == "(?:" { // Non-capturing lparen
|
|
re_postfix = append(re_postfix, nonCapLparenRune)
|
|
i += 3
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '\\' { // Something is being escaped (I don't add the backslash to re_postfix, because it was already added earlier)
|
|
i++
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("stray backslash in expression")
|
|
}
|
|
if re_runes[i] == 'x' {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("stray backslash in expression")
|
|
}
|
|
if re_runes[i] == '{' {
|
|
re_postfix = append(re_postfix, re_runes[i:i+8]...)
|
|
i += 7
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("stray backslash in expression")
|
|
}
|
|
} else if isHex(re_runes[i]) {
|
|
re_postfix = append(re_postfix, re_runes[i:i+2]...)
|
|
i += 2
|
|
} else {
|
|
return nil, fmt.Errorf("invalid hex value in expression")
|
|
}
|
|
} else if isOctal(re_runes[i]) {
|
|
numDigits := 1
|
|
for i+numDigits < len(re_runes) && numDigits < 3 && isOctal(re_runes[i+numDigits]) { // Skip while we see an octal character (max of 3)
|
|
numDigits++
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i:i+numDigits]...)
|
|
i += (numDigits - 1) // I have to move back a step, so that I can add a concatenation operator if necessary, and so that the increment at the bottom of the loop works as intended
|
|
} else {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
}
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '(' && (i == 0 || re_runes[i-1] != '\\') && (i < len(re_runes)-2 && re_runes[i+1] == '?' && slices.Contains([]rune{'=', '!', '<'}, re_runes[i+2])) { // Unescaped open parentheses followed by question mark then '<', '!' or '=' => lokaround. Don't mess with it.
|
|
i++ // Step inside
|
|
if i == len(re_runes)-1 || (re_runes[i+1] != '=' && re_runes[i+1] != '!' && re_runes[i+1] != '<') {
|
|
return nil, fmt.Errorf("invalid regex - lookaround intended?")
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
numOpenParens := 1
|
|
for numOpenParens != 0 {
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("unclosed lookaround")
|
|
}
|
|
if re_runes[i] == '(' || re_runes[i] == nonCapLparenRune {
|
|
numOpenParens++
|
|
}
|
|
if re_runes[i] == ')' {
|
|
numOpenParens--
|
|
if numOpenParens == 0 {
|
|
break
|
|
}
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
}
|
|
continue
|
|
}
|
|
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != nonCapLparenRune && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
|
|
if i < len(re_runes)-1 {
|
|
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
|
|
re_postfix = append(re_postfix, concatRune)
|
|
}
|
|
}
|
|
}
|
|
i++
|
|
}
|
|
|
|
opStack := make([]rune, 0) // Operator stack
|
|
outQueue := make([]postfixNode, 0) // Output queue
|
|
|
|
// Actual algorithm
|
|
numOpenParens := 0 // Number of open parentheses
|
|
for i := 0; i < len(re_postfix); i++ {
|
|
/* Two cases:
|
|
1. Current character is alphanumeric - send to output queue
|
|
2. Current character is operator - do the following:
|
|
a. If current character has greater priority than top of opStack, push to opStack.
|
|
b. If not, keep popping from opStack (and appending to outQueue) until:
|
|
i. opStack is empty, OR
|
|
ii. current character has greater priority than top of opStack
|
|
3. If current character is '(' or NONCAPLPAREN_CHAR, push to opStack
|
|
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
|
|
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
|
|
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
|
|
*/
|
|
c := re_postfix[i]
|
|
if isNormalChar(c) || isSpecialCharWithMetacharReplacement(c) {
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
continue
|
|
}
|
|
// Since every unescaped bracket is replaced by a LBRACKET / RBRACKET, there may
|
|
// have been false positives. For example, the regex ']' has a closing bracket, but it
|
|
// isn't denoting a character class; it's just a regular character. Since it's not escaped,
|
|
// though, I would have converted this into an RBRACKET.
|
|
// To deal with this, I make the following assertion:
|
|
// If at any point I see an RBRACKET 'in the wild' (not in a character class), then it must be
|
|
// a regular character, with no special significance.
|
|
if c == rbracketRune {
|
|
outQueue = append(outQueue, newPostfixCharNode(']'))
|
|
continue
|
|
}
|
|
|
|
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
|
|
if i == len(re_postfix)-1 { // End of string - throw error, because backslash is an escape character (something needs to come after it)
|
|
return nil, fmt.Errorf("backslash with no escape character")
|
|
}
|
|
i++
|
|
if re_postfix[i] == 'x' { // Hex value
|
|
i++
|
|
if re_postfix[i] == '{' && i < len(re_postfix)-6 { // Expanded hex code
|
|
var hexVal int
|
|
n, err := fmt.Sscanf(string(re_postfix[i:]), "{%x}", &hexVal)
|
|
if n < 1 || err != nil {
|
|
return nil, fmt.Errorf("error parsing expanded hex code in expression")
|
|
}
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(hexVal)))
|
|
i += 7
|
|
} else if i < len(re_postfix)-1 { // Two-digit hex code
|
|
hexVal, err := strconv.ParseInt(string([]rune{re_postfix[i], re_postfix[i+1]}), 16, 64) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error parsing hex characters in expression")
|
|
}
|
|
i++ // Loop increment will take care of going forward
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(hexVal)))
|
|
} else {
|
|
return nil, fmt.Errorf("not enough hex characters found in expression")
|
|
}
|
|
} else if isOctal(re_postfix[i]) { // Octal value
|
|
var octVal int64
|
|
var octValStr string
|
|
numDigitsParsed := 0
|
|
for (i+numDigitsParsed) < len(re_postfix) && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 {
|
|
octValStr += string(re_postfix[i+numDigitsParsed])
|
|
numDigitsParsed++
|
|
}
|
|
octVal, err := strconv.ParseInt(octValStr, 8, 32)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error parsing octal value in expression")
|
|
}
|
|
if octVal > 0777 {
|
|
return nil, fmt.Errorf("invalid octal value in expression")
|
|
}
|
|
i += numDigitsParsed - 1 // Shift forward by the number of digits that were parsed. Move back one character, because the loop increment will move us back to the next character automatically
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(octVal)))
|
|
} else {
|
|
escapedNode, err := newEscapedNode(re_postfix[i], false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
outQueue = append(outQueue, escapedNode)
|
|
}
|
|
continue // Escaped character will automatically be skipped when loop variable increments
|
|
}
|
|
|
|
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
|
|
outQueue = append(outQueue, newPostfixDotNode())
|
|
continue
|
|
}
|
|
if c == '^' { // Start-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
if c == '$' { // End-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
// Check if we're at the start of a lookaround
|
|
if c == '(' && i < len(re_postfix)-1 && re_postfix[i+1] == '?' {
|
|
i += 2 // Skip opening paren and question mark
|
|
regex := "" // Stores lookaround regex
|
|
numOpenParens := 1
|
|
for numOpenParens != 0 {
|
|
if i >= len(re_postfix) {
|
|
return nil, fmt.Errorf("unclosed lookaround")
|
|
}
|
|
if re_postfix[i] == '(' || re_postfix[i] == nonCapLparenRune {
|
|
numOpenParens++
|
|
}
|
|
if re_postfix[i] == ')' {
|
|
numOpenParens--
|
|
if numOpenParens == 0 {
|
|
break
|
|
}
|
|
}
|
|
regex += string(re_postfix[i])
|
|
i++
|
|
}
|
|
if len(regex) <= 1 { // Nothing in regex - throw error
|
|
return nil, fmt.Errorf("invalid lookaround. (too short?)")
|
|
}
|
|
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
|
|
// Now we should filter that out.
|
|
toAppend := postfixNode{nodetype: assertionNode, startReps: 1, endReps: 1}
|
|
if regex[0] == '<' { // Lookbehind
|
|
toAppend.lookaroundDir = lookbehind
|
|
regex = regex[1:]
|
|
} else if regex[0] == '=' || regex[0] == '!' {
|
|
toAppend.lookaroundDir = lookahead
|
|
} else {
|
|
return nil, fmt.Errorf("invalid lookaround")
|
|
}
|
|
// Positive or negative
|
|
if regex[0] == '=' { // Positive
|
|
toAppend.lookaroundSign = positive
|
|
toAppend.contents = []rune(regex[1:])
|
|
} else if regex[0] == '!' { // Negative
|
|
toAppend.lookaroundSign = negative
|
|
toAppend.contents = []rune(regex[1:])
|
|
} else {
|
|
return nil, fmt.Errorf("invalid lookaround")
|
|
}
|
|
outQueue = append(outQueue, toAppend)
|
|
continue
|
|
}
|
|
if isOperator(c) {
|
|
if len(opStack) == 0 {
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
topStack, err := peek(opStack)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("operator without operand")
|
|
}
|
|
if priority(c) > priority(topStack) { // 2a
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
for priority(c) <= priority(topStack) { // 2b
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
topStack, _ = peek(opStack)
|
|
}
|
|
outQueueFinalElement, _ := peek(outQueue)
|
|
if (c == '*' && outQueueFinalElement.nodetype == kleeneNode) || (c == '+' && outQueueFinalElement.nodetype == plusNode) { // You cannot apply a quantifier to a quantifier in this way
|
|
return nil, fmt.Errorf("illegal use of token '%c'", c)
|
|
}
|
|
opStack = append(opStack, c)
|
|
}
|
|
}
|
|
}
|
|
if c == lbracketRune { // Used for character classes
|
|
firstCharAdded := false // A character class must have at least 1 character. This flag checks if the first character has been added.
|
|
endOfRange := false // Set to 'true' when we encounter a CHAR_RANGE metacharacter
|
|
i++ // Step forward so we can look at the character class
|
|
// Oops, there's nothing there to look at
|
|
if i >= len(re_postfix) {
|
|
return nil, fmt.Errorf("opening bracket with no closing bracket")
|
|
}
|
|
|
|
// Check if a POSIX character class was specified ouside a bracket. This is an error.
|
|
// Eg. [:digit:] should lead to an error, telling the user that the right syntax is [[:digit:]]
|
|
if re_postfix[i] == ':' {
|
|
posixClassPresent, _ := getPOSIXClass(re_postfix[i+1:])
|
|
if posixClassPresent {
|
|
return nil, fmt.Errorf("the syntax for POSIX character classes is [[:digit:]], not [:digit:]")
|
|
}
|
|
}
|
|
|
|
var invertMatch bool
|
|
if re_postfix[i] == '^' {
|
|
invertMatch = true
|
|
i++
|
|
}
|
|
chars := make([]postfixNode, 0) // List of nodes - used only for character classes
|
|
for i < len(re_postfix) {
|
|
if firstCharAdded && re_postfix[i] == rbracketRune {
|
|
break
|
|
}
|
|
if re_postfix[i] == charRangeRune {
|
|
endOfRange = true
|
|
i++
|
|
continue
|
|
}
|
|
if re_postfix[i] == '\\' { // Backslash indicates a character to be escaped
|
|
if i == len(re_postfix)-1 {
|
|
return nil, fmt.Errorf("stray backslash in character class")
|
|
}
|
|
i++ // Step past backslash
|
|
|
|
if re_postfix[i] == 'x' { // Hex value
|
|
i++
|
|
if re_postfix[i] == '{' && i < len(re_postfix)-7 { // Expanded hex code
|
|
var hexVal int
|
|
n, err := fmt.Sscanf(string(re_postfix[i:]), "{%x}", &hexVal)
|
|
if n < 1 || err != nil {
|
|
return nil, fmt.Errorf("error parsing expanded hex code in character class")
|
|
}
|
|
chars = append(chars, newPostfixCharNode(rune(hexVal)))
|
|
i += 8
|
|
} else if i < len(re_postfix)-2 { // Two-digit hex code
|
|
hexVal, err := strconv.ParseInt(string([]rune{re_postfix[i], re_postfix[i+1]}), 16, 64) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error parsing hex characters in character class")
|
|
}
|
|
i += 2
|
|
chars = append(chars, newPostfixCharNode(rune(hexVal)))
|
|
} else {
|
|
return nil, fmt.Errorf("not enough hex characters found in character class")
|
|
}
|
|
} else if isOctal(re_postfix[i]) { // Octal value
|
|
var octVal int64
|
|
var octValStr string
|
|
numDigitsParsed := 0
|
|
for (i+numDigitsParsed) < len(re_postfix)-1 && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 { // The '-1' exists, because even in the worst case (the character class extends till the end), the last character must be a closing bracket (and nothing else)
|
|
octValStr += string(re_postfix[i+numDigitsParsed])
|
|
numDigitsParsed++
|
|
}
|
|
octVal, err := strconv.ParseInt(octValStr, 8, 32)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error parsing octal value in character class")
|
|
}
|
|
if octVal > 0777 {
|
|
return nil, fmt.Errorf("invalid octal value in character class")
|
|
}
|
|
i += numDigitsParsed // Shift forward by the number of characters parsed
|
|
chars = append(chars, newPostfixCharNode(rune(octVal)))
|
|
} else {
|
|
escapedNode, err := newEscapedNode(re_postfix[i], true)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
chars = append(chars, escapedNode)
|
|
i++
|
|
}
|
|
} else {
|
|
if re_postfix[i] == lbracketRune && i < len(re_postfix)-8 { // Could be the start of a POSIX class - the smallest POSIX class by word-length [[:word:]] takes 8 more characters
|
|
temp_i := i
|
|
temp_i++
|
|
if re_postfix[temp_i] == ':' {
|
|
temp_i++
|
|
posixClassPresent, posixClass := getPOSIXClass(re_postfix[temp_i:])
|
|
// getPOSIXClass returns true if there is some set of characters that
|
|
// ends in a colon and then a closing bracket. If this is not the case, we
|
|
// just treat all the characters as literals.
|
|
// For example, [[:digit:a]] is _not_ a POSIX class, its just a regular
|
|
// character class contains the letters '[', ':', 'd', 'i', 'g', 'i', 't', ':', 'a'.
|
|
// The final 'closing bracket' has no special meaning, its just another character.
|
|
if posixClassPresent {
|
|
var nodeToAdd postfixNode
|
|
switch posixClass {
|
|
case "digit": // Equivalent to '\d'
|
|
nodeToAdd = newPostfixCharNode(genRangeInclusive('0', '9')...)
|
|
case "upper": // [A-Z]
|
|
charsToAdd := genRangeInclusive('A', 'Z')
|
|
nodeToAdd = newPostfixCharNode(charsToAdd...)
|
|
case "lower": // [a-z]
|
|
charsToAdd := genRangeInclusive('a', 'z')
|
|
nodeToAdd = newPostfixCharNode(charsToAdd...)
|
|
case "alpha": //[A-Za-z]
|
|
nodeToAdd = newPostfixCharNode(slices.Concat(genRangeInclusive('A', 'Z'), genRangeInclusive('a', 'z'))...)
|
|
case "xdigit": // [0-9A-Fa-f]
|
|
nodeToAdd = newPostfixCharNode(slices.Concat(genRangeInclusive('A', 'F'), genRangeInclusive('a', 'f'), genRangeInclusive('0', '9'))...)
|
|
case "alnum": // [A-Za-z0-9]
|
|
nodeToAdd = newPostfixCharNode(slices.Concat(genRangeInclusive('A', 'Z'), genRangeInclusive('a', 'z'), genRangeInclusive('0', '9'))...)
|
|
case "blank": // [ \t]
|
|
nodeToAdd = newPostfixCharNode(' ', '\t')
|
|
case "space": // [ \t\n\r\f\v]
|
|
nodeToAdd = newPostfixCharNode(' ', '\t', '\n', '\r', '\f', '\v')
|
|
case "cntrl": // Control characters
|
|
nodeToAdd = newPostfixCharNode(append(genRangeInclusive('\x00', '\x1F'), '\x7F')...)
|
|
case "punct": // Punctuation and symbols
|
|
nodeToAdd = newPostfixCharNode([]rune(`!"\#$%&'()*+,\-./:;<=>?@\[\\\]^_` + "`" + `{|}~`)...)
|
|
case "graph": // Graphic characters
|
|
nodeToAdd = newPostfixCharNode(genRangeInclusive('\x21', '\x7E')...)
|
|
case "print": // Graphic characters + space
|
|
nodeToAdd = newPostfixCharNode(genRangeInclusive('\x20', '\x7E')...)
|
|
case "ascii": // ASCII values
|
|
nodeToAdd = newPostfixCharNode(genRangeInclusive('\x00', '\x7F')...)
|
|
case "word": // Word characters
|
|
nodeToAdd, _ = newEscapedNode('w', true) // This isn't going to error, so I suppress it
|
|
default:
|
|
return nil, err
|
|
}
|
|
chars = append(chars, nodeToAdd)
|
|
i = temp_i + len(posixClass) + 2 // Skip over the class name, the closing colon and the closing bracket
|
|
firstCharAdded = true
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// This used to be an else statement - I removed it, because if the previous if-block fails
|
|
// (ie. if it didn't actually find a character class), then this block must still execute.
|
|
// However, the checks for character classes are nested, so placing this inside an 'else' block
|
|
// will prevent it from running, as the outer if-statement will have evaluated to true.
|
|
if !firstCharAdded && re_postfix[i] > 0xF0000 { // It's a metacharacter that I defined, I'll have to convert it back to the regular character before adding it back, because I haven't added any characters yet. For example, '[[]', the second LBRACKET should be treated like a literal bracket.
|
|
switch re_postfix[i] {
|
|
case lbracketRune:
|
|
chars = append(chars, newPostfixCharNode('['))
|
|
case rbracketRune:
|
|
chars = append(chars, newPostfixCharNode(']'))
|
|
default:
|
|
return nil, fmt.Errorf("error parsing high-range unicode value in character class")
|
|
}
|
|
}
|
|
chars = append(chars, newPostfixCharNode(re_postfix[i]))
|
|
i++
|
|
}
|
|
firstCharAdded = true
|
|
|
|
if endOfRange { // The previous character was an unescaped hyphen, which (in the context of a character class) means the character that was last appended is the end of a character range
|
|
// Things to note:
|
|
// 1. In PCRE and Go's regex engine, a letter _can_ be surrounded by hyphens in a character class.
|
|
// Eg. [a-b-c]
|
|
// While you might think this leads to a syntax error (I thought so), the engine picks 'a-b' as a range,
|
|
// then treats the second '-' and 'c' as regular characters in the character class.
|
|
// So this regex becomes "Match a character from 'a' to 'b', a literal hyphen, or 'c' ".
|
|
// 2. To account for this, the following logic is followed:
|
|
// a. If the second-to-last postfixNode ie. the start of the range has only one element, then we are in a range.
|
|
// i. If it has more than one element, then we are actually looking at a literal hyphen, and we will treat is as such.
|
|
// ii. If either the start or end of the range don't exist in 'chars' ie. something like [-a] or [a-], then too will we treat it as a literal hyphen.
|
|
// b. The last postfixNode added to 'chars' _must_ only have one character (because it's the end of the range).
|
|
endRangePostfixNode, err1 := pop(&chars)
|
|
startRangePostfixNode, err2 := pop(&chars)
|
|
|
|
if (err1 != nil || err2 != nil) || len(startRangePostfixNode.contents) != 1 { // Treat it as a regular hyphen
|
|
chars = append(chars, startRangePostfixNode, newPostfixCharNode('-'), endRangePostfixNode)
|
|
} else if len(endRangePostfixNode.contents) != 1 { // I don't even know what this would look like, this is just a sanity check
|
|
return nil, fmt.Errorf("error parsing character range")
|
|
} else {
|
|
// We have established that they both have a length of 1
|
|
startRangeRune := startRangePostfixNode.contents[0]
|
|
endRangeRune := endRangePostfixNode.contents[0]
|
|
if startRangeRune > endRangeRune {
|
|
return nil, fmt.Errorf("character range syntax is [a-b], not [b-a]")
|
|
}
|
|
chars = append(chars, newPostfixCharNode(genRangeInclusive(startRangeRune, endRangeRune)...))
|
|
}
|
|
|
|
endOfRange = false // Reset the flag
|
|
}
|
|
}
|
|
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Throw error.
|
|
return nil, fmt.Errorf("opening bracket without closing bracket")
|
|
}
|
|
|
|
outQueue = append(outQueue, newCharClassNode(chars, invertMatch))
|
|
continue
|
|
}
|
|
if c == '{' {
|
|
i++ // Skip opening brace
|
|
// Three possibilities:
|
|
// 1. Single number - {5}
|
|
// 2. Range - {3,5}
|
|
// 3. Start with no end, {3,}
|
|
startRange := make([]rune, 0)
|
|
startRangeNum := 0
|
|
endRange := make([]rune, 0)
|
|
endRangeNum := 0
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
startRange = append(startRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if len(startRange) == 0 { // {} is not valid, neither is {,5}
|
|
return nil, fmt.Errorf("invalid numeric specifier")
|
|
}
|
|
if i == len(re_postfix) {
|
|
return nil, fmt.Errorf("brace not closed")
|
|
}
|
|
|
|
startRangeNum, err := strconv.Atoi(string(startRange))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid numeric range")
|
|
}
|
|
|
|
if re_postfix[i] == '}' { // Case 1 above
|
|
endRangeNum = startRangeNum
|
|
} else {
|
|
if re_postfix[i] != ',' {
|
|
return nil, fmt.Errorf("invalid numeric specifier")
|
|
}
|
|
i++ // Skip comma
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
endRange = append(endRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if i == len(re_postfix) {
|
|
return nil, fmt.Errorf("brace not closed")
|
|
}
|
|
if re_postfix[i] != '}' {
|
|
return nil, fmt.Errorf("invalid start range for numeric specifier")
|
|
}
|
|
if len(endRange) == 0 { // Case 3 above
|
|
endRangeNum = infinite_reps
|
|
} else { // Case 2 above
|
|
var err error
|
|
endRangeNum, err = strconv.Atoi(string(endRange))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid end range for numeric specifier")
|
|
}
|
|
}
|
|
}
|
|
|
|
idx := len(outQueue) - 1
|
|
// Get the last added node
|
|
if idx < 0 || outQueue[idx].nodetype == lparenNode {
|
|
return nil, fmt.Errorf("numeric specifier with no content")
|
|
}
|
|
outQueue[idx].startReps = startRangeNum
|
|
outQueue[idx].endReps = endRangeNum
|
|
}
|
|
if c == '(' || c == nonCapLparenRune {
|
|
opStack = append(opStack, c)
|
|
if c == '(' { // We only push _capturing_ group parentheses to outQueue
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
numOpenParens++
|
|
}
|
|
if c == ')' {
|
|
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Throw error if we reach the end of the stack.
|
|
var val rune
|
|
var err error
|
|
for val, err = peek(opStack); val != '(' && val != nonCapLparenRune; val, err = peek(opStack) {
|
|
if err != nil {
|
|
return nil, fmt.Errorf("imbalanced parantheses")
|
|
}
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
_ = mustPop(&opStack) // Get rid of opening parentheses
|
|
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
|
|
outQueue = append(outQueue, newPostfixNode(')')) // Add closing parentheses
|
|
}
|
|
numOpenParens--
|
|
}
|
|
}
|
|
|
|
// Pop all remaining operators (and append to outQueue)
|
|
for len(opStack) > 0 {
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
|
|
if numOpenParens != 0 {
|
|
return nil, fmt.Errorf("imbalanced parantheses")
|
|
}
|
|
|
|
return outQueue, nil
|
|
}
|
|
|
|
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
|
|
// Returns start state and number of groups in regex.
|
|
func thompson(re []postfixNode) (Reg, error) {
|
|
nfa := make([]*nfaState, 0) // Stack of states
|
|
numGroups := 0 // Number of capturing groups
|
|
|
|
// If thompson() receives an empty regex, then whatever was given to shuntingYard()
|
|
// was parsed away. This doesn't mean that the regex itself is empty.
|
|
// For example, it could have been '(?:)'. This is an empty non-capturing group. Since
|
|
// shuntingYard() doesn't include non-capturing groups in its output (and the group contains
|
|
// nothing), the output of shuntingYard() (and the input to thompson()) ends up being empty.
|
|
// In these cases, we will return an NFA with 1 state, with an assertion that is always true.
|
|
if len(re) == 0 {
|
|
start := zeroLengthMatchState()
|
|
nfa = append(nfa, &start)
|
|
}
|
|
|
|
for _, c := range re {
|
|
if c.nodetype == characterNode || c.nodetype == assertionNode {
|
|
stateToAdd := nfaState{}
|
|
stateToAdd.transitions = make(map[int][]*nfaState)
|
|
if c.allChars {
|
|
stateToAdd.allChars = true
|
|
if len(c.except) != 0 {
|
|
// For each node that I am 'excepting' (eg. in an inverted character class):
|
|
// - If the node itself has exceptions, then the exceptions cancel out.
|
|
// Eg. [^\w] == [\W]
|
|
// - Since an allChars node is the only kind that _can_ have exceptions, that's what I check for.
|
|
// - If the node doesn't have exceptions (allChars == false) then the contents of the node are added to the except list.
|
|
for _, node := range c.except {
|
|
if node.allChars {
|
|
stateToAdd.allChars = false
|
|
// For each postfixNode in node.except, extract the contents of the postfixNode. Concatenate them all,
|
|
// and them to the state's _content_. As mentioned above, if the exception has exceptions, then we can match
|
|
// those.
|
|
nodeExceptChars := slices.Concat(funcMap(node.except, func(node postfixNode) []rune {
|
|
nodeContents := node.contents
|
|
if caseInsensitive {
|
|
nodeContents = slices.Concat(funcMap(nodeContents, func(r rune) []rune {
|
|
return allCases(r, caseInsensitive)
|
|
})...)
|
|
}
|
|
return nodeContents
|
|
})...)
|
|
stateToAdd.content = rune2Contents(nodeExceptChars)
|
|
} else {
|
|
charsToAdd := node.contents
|
|
if caseInsensitive {
|
|
charsToAdd = slices.Concat(funcMap(charsToAdd, func(r rune) []rune {
|
|
return allCases(r, caseInsensitive)
|
|
})...)
|
|
}
|
|
stateToAdd.except = append(stateToAdd.except, charsToAdd...)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Convert the current contents to []int, convert the result of rune2contents to []int, append then
|
|
// convert back to stateContents.
|
|
runesToAdd := c.contents
|
|
if caseInsensitive {
|
|
runesToAdd = slices.Concat(funcMap(runesToAdd, func(r rune) []rune {
|
|
return allCases(r, caseInsensitive)
|
|
})...)
|
|
}
|
|
stateToAdd.content = stateContents(append([]int(stateToAdd.content), []int(rune2Contents(runesToAdd))...))
|
|
stateToAdd.output = make([]*nfaState, 0)
|
|
stateToAdd.output = append(stateToAdd.output, &stateToAdd)
|
|
stateToAdd.isEmpty = false
|
|
if c.nodetype == assertionNode {
|
|
stateToAdd.isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
|
|
stateToAdd.content = newContents(epsilon) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
|
|
if c.lookaroundDir == 0 || c.lookaroundSign == 0 {
|
|
switch c.contents[0] {
|
|
case '^':
|
|
stateToAdd.assert = sosAssert
|
|
case '$':
|
|
stateToAdd.assert = eosAssert
|
|
case 'b':
|
|
stateToAdd.assert = wboundAssert
|
|
case 'B':
|
|
stateToAdd.assert = nonwboundAssert
|
|
}
|
|
} else { // Lookaround
|
|
stateToAdd.lookaroundRegex = string(c.contents)
|
|
if c.lookaroundDir == lookahead {
|
|
if c.lookaroundSign == positive {
|
|
stateToAdd.assert = plaAssert
|
|
}
|
|
if c.lookaroundSign == negative {
|
|
stateToAdd.assert = nlaAssert
|
|
}
|
|
}
|
|
if c.lookaroundDir == lookbehind {
|
|
if c.lookaroundSign == positive {
|
|
stateToAdd.assert = plbAssert
|
|
}
|
|
if c.lookaroundSign == negative {
|
|
stateToAdd.assert = nlbAssert
|
|
}
|
|
}
|
|
tmpRe, err := shuntingYard(stateToAdd.lookaroundRegex)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error parsing lookaround: %w", err)
|
|
}
|
|
reg, err := thompson(tmpRe)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error compiling lookaround: %w", err)
|
|
}
|
|
stateToAdd.lookaroundNFA = reg.start
|
|
stateToAdd.lookaroundNumCaptureGroups = reg.numGroups
|
|
|
|
}
|
|
}
|
|
|
|
// Replace ESC_BACKSLASH with actual backslash, so that we can actually check if we encounter it
|
|
replaceByValue([]int(stateToAdd.content), int(escBackslashRune), '\\')
|
|
replaceByValue(stateToAdd.except, escBackslashRune, '\\')
|
|
|
|
nfa = append(nfa, &stateToAdd)
|
|
}
|
|
if c.nodetype == lparenNode || c.nodetype == rparenNode {
|
|
s := &nfaState{}
|
|
s.assert = noneAssert
|
|
s.content = newContents(epsilon)
|
|
s.isEmpty = true
|
|
s.output = make([]*nfaState, 0)
|
|
s.output = append(s.output, s)
|
|
s.transitions = make(map[int][]*nfaState)
|
|
// LPAREN nodes are just added normally
|
|
if c.nodetype == lparenNode {
|
|
numGroups++
|
|
s.groupBegin = true
|
|
s.groupNum = numGroups
|
|
nfa = append(nfa, s)
|
|
continue
|
|
}
|
|
// For RPAREN nodes, I assume that the last two nodes in the list are an LPAREN,
|
|
// and then some other node.
|
|
// These three nodes (LPAREN, the middle node and RPAREN) are extracted together, concatenated
|
|
// and added back in.
|
|
// If the middle node doesn't exist (ie. something like '()' ), that's fine, I just connect the LPAREN
|
|
// and RPAREN nodes.
|
|
// If neither node exists, that's a problem so I return an error.
|
|
if c.nodetype == rparenNode {
|
|
s.groupEnd = true
|
|
middleNode, err1 := pop(&nfa)
|
|
lparenNode, err2 := pop(&nfa)
|
|
if err1 != nil && err2 != nil {
|
|
return Reg{}, fmt.Errorf("imbalanced parentheses")
|
|
} else if err2 != nil { // There was no third node. ie. something like '()'
|
|
lparenNode = middleNode
|
|
if lparenNode.groupBegin != true { // There are only two nodes, but the first one isn't an LPAREN.
|
|
return Reg{}, fmt.Errorf("imbalanced parentheses")
|
|
}
|
|
s.groupNum = lparenNode.groupNum
|
|
to_add := concatenate(lparenNode, s)
|
|
nfa = append(nfa, to_add)
|
|
} else {
|
|
// At this point, we assume all three nodes are valid ('lparenNode', 'middleNode' and 's')
|
|
if lparenNode.groupBegin {
|
|
s.groupNum = lparenNode.groupNum
|
|
} else if middleNode.groupBegin { // Something like 'a()'
|
|
s.groupNum = middleNode.groupNum
|
|
} else { // A middleNode and lparenNode exist, but neither is actually an LPAREN.
|
|
return Reg{}, fmt.Errorf("imbalanced parentheses")
|
|
}
|
|
tmp := concatenate(lparenNode, middleNode)
|
|
to_add := concatenate(tmp, s)
|
|
nfa = append(nfa, to_add)
|
|
}
|
|
}
|
|
}
|
|
if c.nodetype == charclassNode { // A Character class consists of all the nodes in it, alternated
|
|
// Map the list of nodes to a list of states, each state containing the contents of a specific node
|
|
states := funcMap(c.nodeContents, func(node postfixNode) *nfaState {
|
|
s := newState()
|
|
nodeContents := node.contents
|
|
if caseInsensitive {
|
|
nodeContents = slices.Concat(funcMap(nodeContents, func(r rune) []rune {
|
|
return allCases(r, caseInsensitive)
|
|
})...)
|
|
}
|
|
s.content = rune2Contents(nodeContents)
|
|
if len(node.except) > 0 {
|
|
s.allChars = true
|
|
s.except = slices.Concat(funcMap(node.except, func(n postfixNode) []rune {
|
|
return n.contents
|
|
})...)
|
|
}
|
|
return &s
|
|
})
|
|
// Reduce the list of states down to a single state by alternating them
|
|
toAdd := funcReduce(states, func(s1 *nfaState, s2 *nfaState) *nfaState {
|
|
return alternate(s1, s2)
|
|
})
|
|
nfa = append(nfa, toAdd)
|
|
}
|
|
// Must be an operator if it isn't a character
|
|
switch c.nodetype {
|
|
case concatenateNode:
|
|
s2 := mustPop(&nfa)
|
|
// Relax the requirements for concatenation a little bit - If
|
|
// the second element is not found ie. the postfixNodes look
|
|
// like 'a'+CONCAT, then that's fine, we just skip the concatenation.
|
|
s1, err := pop(&nfa)
|
|
if err != nil {
|
|
nfa = append(nfa, s2)
|
|
} else {
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
}
|
|
case kleeneNode: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
|
|
s1, err := pop(&nfa)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error applying kleene star")
|
|
}
|
|
stateToAdd, err := kleene(*s1)
|
|
if err != nil {
|
|
return Reg{}, err
|
|
}
|
|
nfa = append(nfa, stateToAdd)
|
|
case plusNode: // a+ is equivalent to aa*
|
|
s1 := mustPop(&nfa)
|
|
s2, err := kleene(*s1)
|
|
if err != nil {
|
|
return Reg{}, err
|
|
}
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
case questionNode: // ab? is equivalent to a(b|)
|
|
s1, err := pop(&nfa)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error applying question operator")
|
|
}
|
|
s2 := question(s1)
|
|
nfa = append(nfa, s2)
|
|
case pipeNode:
|
|
// A pipe operator doesn't actually need either operand to be present. If an operand isn't present,
|
|
// it is replaced with an implicit 'matchZeroLength' state (this is the same thing that we add at the top if our
|
|
// input has zero postfixNodes).
|
|
// Things to think about:
|
|
// 'a|'
|
|
// '|a'
|
|
// '^a|'
|
|
// '^|a'
|
|
s1, err1 := pop(&nfa)
|
|
s2, err2 := pop(&nfa)
|
|
if err2 != nil || (s2.groupBegin && len(s2.transitions) == 0) { // Doesn't exist, or its just an LPAREN
|
|
if err2 == nil { // Roundabout way of saying that this node existed, but it was an LPAREN, so we append it back
|
|
nfa = append(nfa, s2)
|
|
}
|
|
tmp := zeroLengthMatchState()
|
|
s2 = &tmp
|
|
}
|
|
if err1 != nil || (s1.groupBegin && len(s1.transitions) == 0) { // Doesn't exist, or its just an LPAREN
|
|
if err1 == nil { // See above for explanation
|
|
nfa = append(nfa, s1)
|
|
}
|
|
tmp := zeroLengthMatchState()
|
|
s1 = &tmp
|
|
}
|
|
s3 := alternate(s1, s2)
|
|
nfa = append(nfa, s3)
|
|
}
|
|
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
|
|
if c.endReps != -1 && c.endReps < c.startReps {
|
|
return Reg{}, fmt.Errorf("numeric specifier - start greater than end")
|
|
}
|
|
poppedState := mustPop(&nfa)
|
|
var stateToAdd *nfaState = nil
|
|
// Take advantage of the following facts:
|
|
// a{5} == aaaaa
|
|
// a{3,5} == aaaa?a?
|
|
// a{5,} == aaaaa+
|
|
// Nov. 3 2024 - I have two choices on how I want to implement numeric
|
|
// specifiers.
|
|
// a. Encode the logic while creating the states. I will have to create a function
|
|
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
|
|
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
|
|
// not work). Creating this function might be a lot of work.
|
|
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
|
|
// at this point, I can leave thompson untouched.
|
|
for i := 0; i < c.startReps; i++ { // Case 1
|
|
stateToAdd = concatenate(stateToAdd, cloneState(poppedState))
|
|
}
|
|
if c.endReps == infinite_reps { // Case 3
|
|
s2, err := kleene(*poppedState)
|
|
if err != nil {
|
|
return Reg{}, err
|
|
}
|
|
stateToAdd = concatenate(stateToAdd, s2)
|
|
} else { // Case 2
|
|
for i := c.startReps; i < c.endReps; i++ {
|
|
stateToAdd = concatenate(stateToAdd, question(cloneState(poppedState)))
|
|
}
|
|
}
|
|
nfa = append(nfa, stateToAdd)
|
|
}
|
|
}
|
|
if len(nfa) != 1 {
|
|
return Reg{}, fmt.Errorf("invalid regex")
|
|
}
|
|
|
|
verifyLastStates(nfa)
|
|
|
|
return Reg{nfa[0], numGroups}, nil
|
|
|
|
}
|
|
|
|
// Compiles the given regular expression into a Reg type, suitable for use with the
|
|
// matching functions. The second return value is non-nil if a compilation error has
|
|
// occured. As such, the error value must be checked before using the Reg returned by this function.
|
|
// The second parameter is an optional list of flags, passed to the parsing function shuntingYard.
|
|
func Compile(re string, flags ...ReFlag) (Reg, error) {
|
|
nodes, err := shuntingYard(re, flags...)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error parsing regex: %w", err)
|
|
}
|
|
reg, err := thompson(nodes)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("error compiling regex: %w", err)
|
|
}
|
|
return reg, nil
|
|
}
|