You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kleingrep/regex/matching.go

627 lines
22 KiB
Go

package regex
import (
"fmt"
"sort"
)
// A Match represents a match found by the regex in a given string.
// It is represented as a list of groups, where the nth element contains
// the contents of the nth capturing group. Note that the group may not be valid
// (see [Group.IsValid]). The element at index 0 is known
// as the 0-group, and represents the contents of the entire match.
//
// See [Reg.FindSubmatch] for an example.
type Match []Group
// a Group represents a capturing group. It contains the start and index of the group.
type Group struct {
StartIdx int
EndIdx int
}
func newMatch(size int) Match {
toRet := make([]Group, size)
for i := range toRet {
toRet[i].StartIdx = -1
toRet[i].EndIdx = -1
}
return toRet
}
// Returns the number of valid groups in the match
func (m Match) numValidGroups() int {
numValid := 0
for _, g := range m {
if g.StartIdx >= 0 && g.EndIdx >= 0 {
numValid++
}
}
return numValid
}
// Returns a string containing the indices of all (valid) groups in the match
func (m Match) String() string {
var toRet string
for i, g := range m {
if g.IsValid() {
toRet += fmt.Sprintf("Group %d\n", i)
toRet += g.String()
toRet += "\n"
}
}
return toRet
}
// String converts the Group into a string representation.
func (idx Group) String() string {
return fmt.Sprintf("%d\t%d", idx.StartIdx, idx.EndIdx)
}
// IsValid returns whether a group is valid (ie. whether it matched any text). It
// simply ensures that both indices of the group are >= 0.
func (g Group) IsValid() bool {
return g.StartIdx >= 0 && g.EndIdx >= 0
}
// Simple function, makes it easier to map this over a list of matches
func getZeroGroup(m Match) Group {
return m[0]
}
// Prunes the slice by removing overlapping indices.
func pruneIndices(indices []Match) []Match {
// First, sort the slice by the start indices
sort.Slice(indices, func(i, j int) bool {
return indices[i][0].StartIdx < indices[j][0].StartIdx
})
toRet := make([]Match, 0, len(indices))
current := indices[0]
for _, idx := range indices[1:] {
// idx doesn't overlap with current (starts after current ends), so add current to result
// and update the current.
if idx[0].StartIdx >= current[0].EndIdx {
toRet = append(toRet, current)
current = idx
} else if idx[0].EndIdx > current[0].EndIdx {
// idx overlaps, but it is longer, so update current
current = idx
}
}
// Add last state
toRet = append(toRet, current)
return toRet
}
func copyThread(to *nfaState, from nfaState) {
to.threadGroups = append([]Group{}, from.threadGroups...)
}
// Find returns the 0-group of the leftmost match of the regex in the given string.
// An error value != nil indicates that no match was found.
func (regex Reg) Find(str string) (Group, error) {
match, err := regex.FindNthMatch(str, 1)
if err != nil {
return Group{}, fmt.Errorf("no matches found")
}
return getZeroGroup(match), nil
}
// Match returns a boolean value, indicating whether the regex found a match in the given string.
func (regex Reg) Match(str string) bool {
_, err := regex.Find(str)
return err == nil
}
// FindAll returns a slice containing all the 0-groups of the regex in the given string.
// A 0-group represents the match without any submatches.
func (regex Reg) FindAll(str string) []Group {
indices := regex.FindAllSubmatch(str)
zeroGroups := funcMap(indices, getZeroGroup)
return zeroGroups
}
// FindString returns the text of the leftmost match of the regex in the given string.
// The return value will be an empty string in two situations:
// 1. No match was found
// 2. The match was an empty string
func (regex Reg) FindString(str string) string {
match, err := regex.FindNthMatch(str, 1)
if err != nil {
return ""
}
zeroGroup := getZeroGroup(match)
return str[zeroGroup.StartIdx:zeroGroup.EndIdx]
}
// FindSubmatch returns the leftmost match of the regex in the given string, including
// the submatches matched by capturing groups. The returned [Match] will always contain the same
// number of groups. The validity of a group (whether or not it matched anything) can be determined with
// [Group.IsValid], or by checking that both indices of the group are >= 0.
// The second-return value is nil if no match was found.
func (regex Reg) FindSubmatch(str string) (Match, error) {
match, err := regex.FindNthMatch(str, 1)
if err != nil {
return Match{}, fmt.Errorf("no match found")
} else {
return match, nil
}
}
// FindStringSubmatch is the 'string' version of [FindSubmatch]. It returns a slice of strings,
// where the string at index i contains the text matched by the i-th capturing group.
// The 0-th index represents the entire match.
// An empty string at index n could mean:
// ,
// 1. Group n did not find a match
// 2. Group n found a zero-length match
//
// A return value of nil indicates no match.
func (regex Reg) FindStringSubmatch(str string) []string {
matchStr := make([]string, regex.numGroups+1)
match, err := regex.FindSubmatch(str)
if err != nil {
return nil
}
nonEmptyMatchFound := false
for i := range match {
if match[i].IsValid() {
matchStr[i] = str[match[i].StartIdx:match[i].EndIdx]
nonEmptyMatchFound = true
} else {
matchStr[i] = ""
}
}
if nonEmptyMatchFound == false {
return nil
}
return matchStr
}
// FindAllString is the 'all' version of [FindString].
// It returns a slice of strings containing the text of all matches of
// the regex in the given string.
func (regex Reg) FindAllString(str string) []string {
zerogroups := regex.FindAll(str)
matchStrs := funcMap(zerogroups, func(g Group) string {
return str[g.StartIdx:g.EndIdx]
})
return matchStrs
}
// FindNthMatch return the 'n'th match of the regex in the given string.
// It returns an error (!= nil) if there are fewer than 'n' matches in the string.
func (regex Reg) FindNthMatch(str string, n int) (Match, error) {
idx := 0
matchNum := 0
str_runes := []rune(str)
var matchFound bool
var matchIdx Match
for idx <= len(str_runes) {
matchFound, matchIdx, idx = findAllSubmatchHelper(regex.start, str_runes, idx, regex.numGroups)
if matchFound {
matchNum++
}
if matchNum == n {
return matchIdx, nil
}
}
// We haven't found the nth match after scanning the string - Return an error
return nil, fmt.Errorf("invalid match index - too few matches found")
}
// FindAllSubmatch returns a slice of matches in the given string.
func (regex Reg) FindAllSubmatch(str string) []Match {
idx := 0
str_runes := []rune(str)
var matchFound bool
var matchIdx Match
indices := make([]Match, 0)
for idx <= len(str_runes) {
matchFound, matchIdx, idx = findAllSubmatchHelper(regex.start, str_runes, idx, regex.numGroups)
if matchFound {
indices = append(indices, matchIdx)
}
}
if len(indices) > 0 {
return pruneIndices(indices)
}
return indices
}
func addStateToList(str []rune, idx int, list []nfaState, state nfaState, threadGroups []Group, visited []nfaState) []nfaState {
if stateExists(list, state) || stateExists(visited, state) {
return list
}
visited = append(visited, state)
if state.isKleene || state.isQuestion {
copyThread(state.splitState, state)
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited)
copyThread(state.next, state)
list = addStateToList(str, idx, list, *state.next, threadGroups, visited)
return list
}
if state.isAlternation {
copyThread(state.next, state)
list = addStateToList(str, idx, list, *state.next, threadGroups, visited)
copyThread(state.splitState, state)
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited)
return list
}
state.threadGroups = append([]Group{}, threadGroups...)
if state.assert != noneAssert {
if state.checkAssertion(str, idx) {
copyThread(state.next, state)
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited)
}
}
if state.groupBegin {
state.threadGroups[state.groupNum].StartIdx = idx
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited)
}
if state.groupEnd {
state.threadGroups[state.groupNum].EndIdx = idx
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited)
}
return append(list, state)
}
// Helper for FindAllMatches. Returns whether it found a match, the
// first Match it finds, and how far it got into the string ie. where
// the next search should start from.
//
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups int) (bool, Match, int) {
// Base case - exit if offset exceeds string's length
if offset > len(str) {
// The second value here shouldn't be used, because we should exit when the third return value is > than len(str)
return false, []Group{}, offset
}
resetThreads(start)
// Hold a list of match indices for the current run. When we
// can no longer find a match, the match with the largest range is
// chosen as the match for the entire string.
// This allows us to pick the longest possible match (which is how greedy matching works).
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
// tempIndices := newMatch(numGroups + 1)
// foundPath := false
//startIdx := offset
//endIdx := offset
currentStates := make([]nfaState, 0)
nextStates := make([]nfaState, 0)
// tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
i := offset // Index in string
//startingFrom := i // Store starting index
// If the first state is an assertion, makes sure the assertion
// is true before we do _anything_ else.
if start.assert != noneAssert {
if start.checkAssertion(str, offset) == false {
i++
return false, []Group{}, i
}
}
// Increment until we hit a character matching the start state (assuming not 0-state)
// if start.isEmpty == false {
// for i < len(str) && !start.contentContains(str, i) {
// i++
// }
// startIdx = i
// startingFrom = i
// i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
// }
// start.threadGroups = newMatch(numGroups + 1)
// Check if the start state begins a group - if so, add the start index to our list
//if start.groupBegin {
// start.threadGroups[start.groupNum].StartIdx = i
// tempIndices[start.groupNum].startIdx = i
//}
start.threadGroups = newMatch(numGroups + 1)
start.threadGroups[0].StartIdx = i
currentStates = addStateToList(str, i, currentStates, *start, start.threadGroups, nil)
var match Match = nil
// var isEmptyAndNoAssertion bool
// Main loop
for idx := i; idx <= len(str); idx++ {
if len(currentStates) == 0 {
break
}
for currentStateIdx := 0; currentStateIdx < len(currentStates); currentStateIdx++ {
currentState := currentStates[currentStateIdx]
if currentState.threadGroups == nil {
currentState.threadGroups = newMatch(numGroups + 1)
currentState.threadGroups[0].StartIdx = idx
}
if currentState.isLast {
currentState.threadGroups[0].EndIdx = idx
match = append([]Group{}, currentState.threadGroups...)
break
} else if !currentState.isAlternation && !currentState.isKleene && !currentState.isQuestion && !currentState.groupBegin && !currentState.groupEnd { // Normal character or assertion
if currentState.contentContains(str, idx) {
nextStates = addStateToList(str, idx+1, nextStates, *currentState.next, currentState.threadGroups, nil)
}
}
// if currentState.groupBegin {
// currentState.threadGroups[currentState.groupNum].StartIdx = idx
// }
// if currentState.groupEnd {
// currentState.threadGroups[currentState.groupNum].EndIdx = idx
// }
// Alternation - enqueue left then right state, and continue
// if currentState.isAlternation {
// if currentState.isKleene { // Reverse order of adding things
// rightState := currentState.splitState
// copyThread(rightState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+1, *rightState)
// leftState := currentState.next
// copyThread(leftState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+2, *leftState)
// } else {
// leftState := currentState.next
// copyThread(leftState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+1, *leftState)
// rightState := currentState.splitState
// copyThread(rightState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+2, *rightState)
// }
// continue
// }
// Empty state - enqueue next state, do _not_ increment the SP
// if !currentState.isAlternation && currentState.isEmpty && currentState.assert == noneAssert { //&& currentState.groupBegin == false && currentState.groupEnd == false {
// isEmptyAndNoAssertion = true
// }
//
// if currentState.contentContains(str, idx) {
// foundMatch = true
// }
//
// if isEmptyAndNoAssertion || foundMatch {
// nextMatch := *(currentState.next)
// copyThread(&nextMatch, currentState)
// if currentState.groupBegin {
// // if !stateExists(currentStates, nextMatch) {
// currentStates = slices.Insert(currentStates, currentStateIdx+1, nextMatch)
// //}
// } else if currentState.groupEnd {
// if !stateExists(currentStates, nextMatch) {
// currentStates = slices.Insert(currentStates, currentStateIdx+1, nextMatch) // append(currentStates, nextMatch)
// }
// } else if currentState.assert != noneAssert {
// if !stateExists(currentStates, nextMatch) {
// currentStates = append(currentStates, nextMatch)
// }
// } else if currentState.isEmpty && !currentState.groupBegin && !currentState.groupEnd {
// if !stateExists(currentStates, nextMatch) {
// currentStates = append(currentStates, nextMatch)
// }
// } else {
// if !stateExists(nextStates, nextMatch) {
// nextStates = append(nextStates, nextMatch)
// }
// }
// }
//
// if currentState.isLast && len(nextStates) == 0 { // Last state reached
// currentState.threadGroups[0].EndIdx = idx
// if idx == currentState.threadGroups[0].StartIdx {
// idx += 1
// }
// return true, currentState.threadGroups, idx
// }
}
currentStates = append([]nfaState{}, nextStates...)
nextStates = nil
}
if match != nil {
if offset == match[0].EndIdx {
return true, match, match[0].EndIdx + 1
}
return true, match, match[0].EndIdx
}
return false, []Group{}, i + 1
// zeroStates := make([]*nfaState, 0)
// // Keep taking zero-states, until there are no more left to take
// // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
// topStateItem := currentStates.peek()
// topState := topStateItem.(*priorQueueItem).state
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
// tempStates = append(tempStates, zeroStates...)
// num_appended := 0
// for isZero == true {
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
// if num_appended == 0 { // Break if we haven't appended any more unique values
// break
// }
// }
// if isZero == true {
// currentStates.Pop()
// }
//
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
// tempStates = nil
//
// // Take any transitions corresponding to current character
// numStatesMatched := 0 // The number of states which had at least 1 match for this round
// assertionFailed := false // Whether or not an assertion failed for this round
// lastStateInList := false // Whether or not a last state was in our list of states
// var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
// lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
// for numStatesMatched == 0 && lastStateInList == false {
// if currentStates.Len() == 0 {
// break
// }
// stateItem := heap.Pop(currentStates)
// state := stateItem.(*priorQueueItem).state
// matches, numMatches := state.matchesFor(str, i)
// if numMatches > 0 {
// numStatesMatched++
// tempStates = append([]*nfaState(nil), matches...)
// foundPath = true
// for _, m := range matches {
// if m.threadGroups == nil {
// m.threadGroups = newMatch(numGroups + 1)
// }
// m.threadSP = state.threadSP + 1
// copy(m.threadGroups, state.threadGroups)
// }
// }
// if numMatches < 0 {
// assertionFailed = true
// }
// if state.isLast {
// if state.isLookaround() {
// lastLookaroundInList = true
// }
// lastStateInList = true
// lastStatePtr = state
// }
// }
//
// if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
// // If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
// // state. The explanation below is my attempt to explain this behavior.
// // If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
// //
// // One of the states in our list was a last state and a lookaround. In this case, we
// // don't abort upon failure of the assertion, because we have found
// // another path to a final state.
// // Even if the last state _was_ an assertion, we can use the previously
// // saved indices to find a match.
// if lastLookaroundInList {
// break
// } else {
// if i == startingFrom {
// i++
// }
// return false, []Group{}, i
// }
// }
// // Check if we can find a state in our list that is:
// // a. A last-state
// // b. Empty
// // c. Doesn't assert anything
// for _, stateItem := range *currentStates {
// s := stateItem.state
// if s.isLast && s.isEmpty && s.assert == noneAssert {
// lastStatePtr = s
// lastStateInList = true
// }
// }
// if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
// for j := 1; j < numGroups+1; j++ {
// tempIndices[j] = lastStatePtr.threadGroups[j]
// }
// endIdx = i
// tempIndices[0] = Group{startIdx, endIdx}
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
//
// // Check if we can find a zero-length match
// if foundPath == false {
// currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
// return item.state
// })
// if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
// if tempIndices[0].IsValid() == false {
// tempIndices[0] = Group{startIdx, startIdx}
// }
// }
// // If we haven't moved in the string, increment the counter by 1
// // to ensure we don't keep trying the same string over and over.
// // if i == startingFrom {
// startIdx++
// // i++
// // }
// if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
// return false, []Group{}, startIdx
// }
// currentStates = &priorityQueue{}
// slices.Reverse(tempStates)
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
// tempStates = nil
//
// i++
// }
//
// // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
// // This is the exact same algorithm used inside the loop, so I should probably put it in a function.
//
// if currentStates.Len() > 0 {
// topStateItem := currentStates.peek()
// topState := topStateItem.(*priorQueueItem).state
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
// tempStates = append(tempStates, zeroStates...)
// num_appended := 0 // Number of unique states addded to tempStates
// for isZero == true {
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
// if num_appended == 0 { // Break if we haven't appended any more unique values
// break
// }
// }
// }
//
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
//
// tempStates = nil
//
// for _, stateItem := range *currentStates {
// state := stateItem.state
// // Only add the match if the start index is in bounds. If the state has an assertion,
// // make sure the assertion checks out.
// if state.isLast && i <= len(str) {
// if state.assert == noneAssert || state.checkAssertion(str, i) {
// for j := 1; j < numGroups+1; j++ {
// tempIndices[j] = state.threadGroups[j]
// }
// endIdx = i
// tempIndices[0] = Group{startIdx, endIdx}
// }
// }
// }
//
// if tempIndices.numValidGroups() > 0 {
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
//
// if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
//
// startIdx++
// }
//
// return false, []Group{}, startIdx
}