package main
import (
"fmt"
"slices"
"strconv"
"unicode"
)
// Holds a list of all characters that are _not_ matched by the dot metacharacter
var notDotChars [ ] rune
// A Reg represents the result of compiling a regular expression. It contains
// the startState of the NFA representation of the regex, and the number of capturing
// groups in the regex.
type Reg struct {
start * State
numGroups int
}
const CONCAT rune = '~'
// Flags for shuntingYard - control its behavior
type ReFlag int
const (
RE_NO_FLAGS ReFlag = iota
RE_CASE_INSENSITIVE
RE_MULTILINE
)
func isOperator ( c rune ) bool {
if c == '+' || c == '?' || c == '*' || c == '|' || c == CONCAT {
return true
}
return false
}
/* priority returns the priority of the given operator */
func priority ( op rune ) int {
precedence := [ ] rune { '|' , CONCAT , '+' , '*' , '?' }
return slices . Index ( precedence , op )
}
/ *
The Shunting - Yard algorithm is used to convert the given infix ( regeular ) expression to postfix .
The primary benefit of this is getting rid of parentheses .
It also inserts explicit concatenation operators to make parsing easier in Thompson ' s algorithm .
An error can be returned for a multitude of reasons - the reason is specified in the error string .
The function also takes in 0 or more flags , which control the behavior of the parser .
See : https : //blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
* /
func shuntingYard ( re string , flags ... ReFlag ) ( [ ] postfixNode , error ) {
// Check which flags are enabled
caseInsensitive := false
// In Multiline mode, the newline character is considered a
// 'dot' character ie. the dot metacharacter matches a newline as well.
if slices . Contains ( flags , RE_MULTILINE ) {
notDotChars = [ ] rune { }
} else {
notDotChars = [ ] rune { '\n' }
}
if slices . Contains ( flags , RE_CASE_INSENSITIVE ) {
caseInsensitive = true
}
re_postfix := make ( [ ] rune , 0 )
// Convert the string to a slice of runes to allow iteration through it
re_runes_orig := [ ] rune ( re ) // This is the rune slice before the first parsing loop (which detects and replaces numeric ranges)
re_runes := make ( [ ] rune , 0 )
// Check for numeric range. If we are at the start of a numeric range,
// skip to end and construct the equivalent regex for the range.
// The reason this is outside the loop below, is that it actually modifies
// the given regex (we 'cut' the numeric range and 'paste' an equivalent regex).
// It also makes the overall parsing easier, since I don't have to worry about the numeric range
// anymore.
// Eventually, I might be able to add it into the main parsing loop, to reduce the time
// complexity.
// A numeric range has the syntax: <num1-num2>. Ir matches all numbers in this range.
//
// Also check for non-capturing groups. The LPAREN of a non-capturing group looks like this: '(?:'
// I take this out, and put in a special character - NONCAPLPAREN_CHAR.
//
// Finally, check for escaped backslashes. Replace these with the BACKSLASH metacharacter. Later, in thompson(),
// these will be converted back. This avoids confusiuon in detecting whether a character is escaped eg. detecting
// whether '\\[a]' has an escaped opening bracket (it doesn't).
for i := 0 ; i < len ( re_runes_orig ) ; i ++ {
c := re_runes_orig [ i ]
if c == '<' && ( i == 0 || ( re_runes_orig [ i - 1 ] != '\\' && re_runes_orig [ i - 1 ] != '?' ) ) {
i ++ // Step over opening angle bracket
tmpStr := ""
hyphenFound := false
for i < len ( re_runes_orig ) && re_runes_orig [ i ] != '>' {
if ! unicode . IsDigit ( re_runes_orig [ i ] ) {
if re_runes_orig [ i ] != '-' || ( hyphenFound ) {
return nil , fmt . Errorf ( "Invalid numeric range." )
}
}
if re_runes_orig [ i ] == '-' {
hyphenFound = true
}
tmpStr += string ( re_runes_orig [ i ] )
i ++
}
// End of string reached and last character doesn't close the range
if i == len ( re_runes_orig ) && re_runes_orig [ len ( re_runes_orig ) - 1 ] != '>' {
return nil , fmt . Errorf ( "Numeric range not closed." )
}
if len ( tmpStr ) == 0 {
return nil , fmt . Errorf ( "Empty numeric range." )
}
// Closing bracket will be skipped when the loop variable increments
var rangeStart int
var rangeEnd int
fmt . Sscanf ( tmpStr , "%d-%d" , & rangeStart , & rangeEnd )
regex := range2regex ( rangeStart , rangeEnd )
re_runes = append ( re_runes , [ ] rune ( regex ) ... )
} else if c == '(' && i < len ( re_runes_orig ) - 2 && re_runes_orig [ i + 1 ] == '?' && re_runes_orig [ i + 2 ] == ':' {
re_runes = append ( re_runes , NONCAPLPAREN_CHAR )
i += 2
} else if c == '\\' && i < len ( re_runes_orig ) - 1 && re_runes_orig [ i + 1 ] == '\\' { // Escaped backslash
re_runes = append ( re_runes , ESC_BACKSLASH )
i ++
} else {
re_runes = append ( re_runes , c )
}
}
/ * Add concatenation operators .
Only add a concatenation operator between two characters if both the following conditions are met :
1. The first character isn ' t an opening parantheses or alteration operator ( or an escape character )
a . This makes sense , because these operators can ' t be _concatenated_ with anything else .
2. The second character isn ' t a ' closing operator ' - one that applies to something before it
a . Again , these operators can ' be concatenated _to_ . They can , however , be concatenated _from_ .
Caveats :
1. Don ' t mess with anything inside brackets - character class
2. Don ' t mess with anything inside braces - numeric repetition
3. Don ' t mess with any lookarounds .
* /
i := 0
for i < len ( re_runes ) {
re_postfix = append ( re_postfix , re_runes [ i ] )
if re_runes [ i ] == '[' && ( i == 0 || re_runes [ i - 1 ] != '\\' ) { // We do not touch things inside brackets, unless they are escaped. Inside this block, the only task is to expand character ranges into their constituent characters.
re_postfix [ len ( re_postfix ) - 1 ] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
toAppend := make ( [ ] rune , 0 ) // Holds all the runes in the current character class
if i < len ( re_runes ) - 1 && re_runes [ i + 1 ] == '^' { // Inverting class - match everything NOT in brackets
re_postfix = append ( re_postfix , '^' )
i ++ // Skip opening bracket and caret
}
if i < len ( re_runes ) - 1 && re_runes [ i + 1 ] == ']' { // Nothing inside brackets - panic.
return nil , fmt . Errorf ( "Empty character class." )
}
for re_runes [ i ] != ']' || i == 0 || re_runes [ i - 1 ] == '\\' {
i ++ // Skip all characters inside _unescaped_ brackets (we are _not_ at a closing bracket, or if we are, the previous character is a backslash)
// TODO: Check for escaped characters
// Check ahead for character range
if i < len ( re_runes ) - 2 && re_runes [ i + 1 ] == '-' {
rangeStart := re_runes [ i ]
rangeEnd := re_runes [ i + 2 ]
if int ( rangeEnd ) < int ( rangeStart ) {
return nil , fmt . Errorf ( "Range is out of order." )
}
for i := rangeStart ; i <= rangeEnd ; i ++ {
toAppend = append ( toAppend , i )
}
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
continue
}
toAppend = append ( toAppend , re_runes [ i ] )
}
// Replace the last character (which should have been ']', with RBRACKET
toAppend [ len ( toAppend ) - 1 ] = RBRACKET
re_postfix = append ( re_postfix , toAppend ... )
}
if i < len ( re_runes ) && re_runes [ i ] == '{' && ( i > 0 && re_runes [ i - 1 ] != '\\' ) { // We don't touch things inside braces, either
i ++ // Skip opening brace
for i < len ( re_runes ) && re_runes [ i ] != '}' {
re_postfix = append ( re_postfix , re_runes [ i ] )
i ++
}
if i == len ( re_runes ) {
return nil , fmt . Errorf ( "Invalid numeric specifier." )
}
re_postfix = append ( re_postfix , re_runes [ i ] ) // Append closing brace
}
if i < len ( re_runes ) - 3 && string ( re_runes [ i + 1 : i + 4 ] ) == "(?:" { // Non-capturing lparen
re_postfix = append ( re_postfix , NONCAPLPAREN_CHAR )
i += 3
}
if i < len ( re_runes ) && re_runes [ i ] == '\\' { // Something is being escaped (I don't add the backslash to re_postfix, because it was already added earlier)
i ++
if i >= len ( re_runes ) {
return nil , fmt . Errorf ( "Stray backslash in expression." )
}
if re_runes [ i ] == 'x' {
re_postfix = append ( re_postfix , re_runes [ i ] )
i ++
if i >= len ( re_runes ) {
return nil , fmt . Errorf ( "Stray backslash in expression." )
}
if re_runes [ i ] == '{' {
re_postfix = append ( re_postfix , re_runes [ i : i + 8 ] ... )
i += 7
if i >= len ( re_runes ) {
return nil , fmt . Errorf ( "Stray backslash in expression." )
}
} else if isHex ( re_runes [ i ] ) {
re_postfix = append ( re_postfix , re_runes [ i : i + 2 ] ... )
i += 2
} else {
return nil , fmt . Errorf ( "Invalid hex value in expression." )
}
} else if isOctal ( re_runes [ i ] ) {
numDigits := 1
for i + numDigits < len ( re_runes ) && numDigits < 3 && isOctal ( re_runes [ i + numDigits ] ) { // Skip while we see an octal character (max of 3)
numDigits ++
}
re_postfix = append ( re_postfix , re_runes [ i : i + numDigits ] ... )
i += ( numDigits - 1 ) // I have to move back a step, so that I can add a concatenation operator if necessary, and so that the increment at the bottom of the loop works as intended
} else {
re_postfix = append ( re_postfix , re_runes [ i ] )
}
}
if i < len ( re_runes ) && re_runes [ i ] == '(' && ( i == 0 || re_runes [ i - 1 ] != '\\' ) && ( i < len ( re_runes ) - 2 && re_runes [ i + 1 ] == '?' && slices . Contains ( [ ] rune { '=' , '!' , '<' } , re_runes [ i + 2 ] ) ) { // Unescaped open parentheses followed by question mark then '<', '!' or '=' => lokaround. Don't mess with it.
i ++ // Step inside
if i == len ( re_runes ) - 1 || ( re_runes [ i + 1 ] != '=' && re_runes [ i + 1 ] != '!' && re_runes [ i + 1 ] != '<' ) {
return nil , fmt . Errorf ( "Invalid regex. Lookaround intended?" )
}
re_postfix = append ( re_postfix , re_runes [ i ] )
i ++
numOpenParens := 1
for numOpenParens != 0 {
if i >= len ( re_runes ) {
return nil , fmt . Errorf ( "Unclosed lookaround." )
}
if re_runes [ i ] == '(' || re_runes [ i ] == NONCAPLPAREN_CHAR {
numOpenParens ++
}
if re_runes [ i ] == ')' {
numOpenParens --
if numOpenParens == 0 {
break
}
}
re_postfix = append ( re_postfix , re_runes [ i ] )
i ++
}
continue
}
if i < len ( re_runes ) && ( re_runes [ i ] != '(' && re_runes [ i ] != NONCAPLPAREN_CHAR && re_runes [ i ] != '|' && re_runes [ i ] != '\\' ) || ( i > 0 && re_runes [ i - 1 ] == '\\' ) { // Every character should be concatenated if it is escaped
if i < len ( re_runes ) - 1 {
if re_runes [ i + 1 ] != '|' && re_runes [ i + 1 ] != '*' && re_runes [ i + 1 ] != '+' && re_runes [ i + 1 ] != '?' && re_runes [ i + 1 ] != ')' && re_runes [ i + 1 ] != '{' {
re_postfix = append ( re_postfix , CONCAT )
}
}
}
i ++
}
opStack := make ( [ ] rune , 0 ) // Operator stack
outQueue := make ( [ ] postfixNode , 0 ) // Output queue
// Actual algorithm
numOpenParens := 0 // Number of open parentheses
for i := 0 ; i < len ( re_postfix ) ; i ++ {
/ * Two cases :
1. Current character is alphanumeric - send to output queue
2. Current character is operator - do the following :
a . If current character has greater priority than top of opStack , push to opStack .
b . If not , keep popping from opStack ( and appending to outQueue ) until :
i . opStack is empty , OR
ii . current character has greater priority than top of opStack
3. If current character is '(' or NONCAPLPAREN_CHAR , push to opStack
4. If current character is ')' , pop from opStack ( and append to outQueue ) until '(' is found . Discard parantheses .
5. If current character is '[' , find all the characters until ']' , then create a postfixNode containing all these contents . Add this node to outQueue .
6. If current character is '{' , find the appropriate numeric specifier ( range start , range end ) . Apply the range to the postfixNode at the end of outQueue .
* /
c := re_postfix [ i ]
if isNormalChar ( c ) {
if caseInsensitive {
outQueue = append ( outQueue , newPostfixNode ( allCases ( c ) ... ) )
} else {
outQueue = append ( outQueue , newPostfixNode ( c ) )
}
continue
}
// Escape character
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
if i == len ( re_postfix ) - 1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
return nil , fmt . Errorf ( "ERROR: Backslash with no escape character." )
}
i ++
if re_postfix [ i ] == 'x' { // Hex value
i ++
if re_postfix [ i ] == '{' && i < len ( re_postfix ) - 6 { // Expanded hex code
var hexVal int
n , err := fmt . Sscanf ( string ( re_postfix [ i : ] ) , "{%x}" , & hexVal )
if n < 1 || err != nil {
return nil , fmt . Errorf ( "Error parsing expanded hex code in expression." )
}
outQueue = append ( outQueue , newPostfixCharNode ( rune ( hexVal ) ) )
i += 7
} else if i < len ( re_postfix ) - 1 { // Two-digit hex code
hexVal , err := strconv . ParseInt ( string ( [ ] rune { re_postfix [ i ] , re_postfix [ i + 1 ] } ) , 16 , 64 ) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
if err != nil {
return nil , fmt . Errorf ( "Error parsing hex characters in expression." )
}
i ++ // Loop increment will take care of going forward
outQueue = append ( outQueue , newPostfixCharNode ( rune ( hexVal ) ) )
} else {
return nil , fmt . Errorf ( "Not enough hex characters found in expression." )
}
} else if isOctal ( re_postfix [ i ] ) { // Octal value
var octVal int64
var octValStr string
numDigitsParsed := 0
for ( i + numDigitsParsed ) < len ( re_postfix ) && isOctal ( re_postfix [ i + numDigitsParsed ] ) && numDigitsParsed <= 3 {
octValStr += string ( re_postfix [ i + numDigitsParsed ] )
numDigitsParsed ++
}
octVal , err := strconv . ParseInt ( octValStr , 8 , 32 )
if err != nil {
return nil , fmt . Errorf ( "Error parsing octal value in expression." )
}
if octVal > 0777 {
return nil , fmt . Errorf ( "Invalid octal value in expression." )
}
i += numDigitsParsed - 1 // Shift forward by the number of digits that were parsed. Move back one character, because the loop increment will move us back to the next character automatically
outQueue = append ( outQueue , newPostfixCharNode ( rune ( octVal ) ) )
} else {
escapedNode , err := newEscapedNode ( re_postfix [ i ] , false )
if err != nil {
return nil , fmt . Errorf ( "Invalid escape character in expression." )
}
outQueue = append ( outQueue , escapedNode )
}
continue // Escaped character will automatically be skipped when loop variable increments
}
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
outQueue = append ( outQueue , newPostfixDotNode ( ) )
continue
}
if c == '^' { // Start-of-string assertion
outQueue = append ( outQueue , newPostfixNode ( c ) )
}
if c == '$' { // End-of-string assertion
outQueue = append ( outQueue , newPostfixNode ( c ) )
}
// Check if we're at the start of a lookaround
if c == '(' && i < len ( re_postfix ) - 1 && re_postfix [ i + 1 ] == '?' {
i += 2 // Skip opening paren and question mark
regex := "" // Stores lookaround regex
numOpenParens := 1
for numOpenParens != 0 {
if i >= len ( re_postfix ) {
return nil , fmt . Errorf ( "Unclosed lookaround." )
}
if re_postfix [ i ] == '(' || re_postfix [ i ] == NONCAPLPAREN_CHAR {
numOpenParens ++
}
if re_postfix [ i ] == ')' {
numOpenParens --
if numOpenParens == 0 {
break
}
}
regex += string ( re_postfix [ i ] )
i ++
}
if len ( regex ) <= 1 { // Nothing in regex - panic
return nil , fmt . Errorf ( "Invalid lookaround. (too short?)" )
}
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
// Now we should filter that out.
toAppend := postfixNode { nodetype : ASSERTION , startReps : 1 , endReps : 1 }
if regex [ 0 ] == '<' { // Lookbehind
toAppend . lookaroundDir = LOOKBEHIND
regex = regex [ 1 : ]
} else if regex [ 0 ] == '=' || regex [ 0 ] == '!' {
toAppend . lookaroundDir = LOOKAHEAD
} else {
return nil , fmt . Errorf ( "Invalid lookaround." )
}
// Positive or negative
if regex [ 0 ] == '=' { // Positive
toAppend . lookaroundSign = POSITIVE
toAppend . contents = [ ] rune ( regex [ 1 : ] )
} else if regex [ 0 ] == '!' { // Negative
toAppend . lookaroundSign = NEGATIVE
toAppend . contents = [ ] rune ( regex [ 1 : ] )
} else {
return nil , fmt . Errorf ( "Invalid lookaround." )
}
outQueue = append ( outQueue , toAppend )
continue
}
if isOperator ( c ) {
if len ( opStack ) == 0 {
opStack = append ( opStack , c )
} else {
topStack , err := peek ( opStack )
if err != nil {
return nil , fmt . Errorf ( "Operator without operand." )
}
if priority ( c ) > priority ( topStack ) { // 2a
opStack = append ( opStack , c )
} else {
for priority ( c ) <= priority ( topStack ) { // 2b
to_append := mustPop ( & opStack )
outQueue = append ( outQueue , newPostfixNode ( to_append ) )
topStack , _ = peek ( opStack )
}
opStack = append ( opStack , c )
}
}
}
if c == LBRACKET { // Used for character classes
i ++ // Step forward so we can look at the character class
var invertMatch bool
if re_postfix [ i ] == '^' {
invertMatch = true
i ++
}
chars := make ( [ ] postfixNode , 0 ) // List of nodes - used only for character classes
for i < len ( re_postfix ) {
if re_postfix [ i ] == RBRACKET {
break
}
if re_postfix [ i ] == '\\' { // Backslash indicates a character to be escaped
if i == len ( re_postfix ) - 1 {
return nil , fmt . Errorf ( "Stray backslash in character class." )
}
i ++ // Step past backslash
if re_postfix [ i ] == 'x' { // Hex value
i ++
if re_postfix [ i ] == '{' && i < len ( re_postfix ) - 7 { // Expanded hex code
var hexVal int
n , err := fmt . Sscanf ( string ( re_postfix [ i : ] ) , "{%x}" , & hexVal )
if n < 1 || err != nil {
return nil , fmt . Errorf ( "Error parsing expanded hex code in character class." )
}
chars = append ( chars , newPostfixCharNode ( rune ( hexVal ) ) )
i += 8
} else if i < len ( re_postfix ) - 2 { // Two-digit hex code
hexVal , err := strconv . ParseInt ( string ( [ ] rune { re_postfix [ i ] , re_postfix [ i + 1 ] } ) , 16 , 64 ) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
if err != nil {
return nil , fmt . Errorf ( "Error parsing hex characters in character class." )
}
i += 2
chars = append ( chars , newPostfixCharNode ( rune ( hexVal ) ) )
} else {
return nil , fmt . Errorf ( "Not enough hex characters found in character class." )
}
} else if isOctal ( re_postfix [ i ] ) { // Octal value
var octVal int64
var octValStr string
numDigitsParsed := 0
for ( i + numDigitsParsed ) < len ( re_postfix ) - 1 && isOctal ( re_postfix [ i + numDigitsParsed ] ) && numDigitsParsed <= 3 { // The '-1' exists, because even in the worst case (the character class extends till the end), the last character must be a closing bracket (and nothing else)
octValStr += string ( re_postfix [ i + numDigitsParsed ] )
numDigitsParsed ++
}
octVal , err := strconv . ParseInt ( octValStr , 8 , 32 )
if err != nil {
return nil , fmt . Errorf ( "Error parsing octal value in character class." )
}
if octVal > 0777 {
return nil , fmt . Errorf ( "Invalid octal value in character class." )
}
i += numDigitsParsed // Shift forward by the number of characters parsed
chars = append ( chars , newPostfixCharNode ( rune ( octVal ) ) )
} else {
escapedNode , err := newEscapedNode ( re_postfix [ i ] , true )
if err != nil {
return nil , fmt . Errorf ( "Invalid escape character in character class." )
}
chars = append ( chars , escapedNode )
i ++
}
} else {
chars = append ( chars , newPostfixCharNode ( re_postfix [ i ] ) )
i ++
}
}
if i == len ( re_postfix ) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
return nil , fmt . Errorf ( "Opening bracket without closing bracket." )
}
outQueue = append ( outQueue , newCharClassNode ( chars , invertMatch ) )
continue
}
if c == '{' {
i ++ // Skip opening brace
// Three possibilities:
// 1. Single number - {5}
// 2. Range - {3,5}
// 3. Start with no end, {3,}
startRange := make ( [ ] rune , 0 )
startRangeNum := 0
endRange := make ( [ ] rune , 0 )
endRangeNum := 0
for i < len ( re_postfix ) && unicode . IsDigit ( re_postfix [ i ] ) {
startRange = append ( startRange , re_postfix [ i ] )
i ++
}
if len ( startRange ) == 0 { // {} is not valid, neither is {,5}
return nil , fmt . Errorf ( "Invalid numeric specifier." )
}
if i == len ( re_postfix ) {
return nil , fmt . Errorf ( "Brace not closed." )
}
startRangeNum , err := strconv . Atoi ( string ( startRange ) )
if err != nil {
panic ( err )
}
if re_postfix [ i ] == '}' { // Case 1 above
endRangeNum = startRangeNum
} else {
if re_postfix [ i ] != ',' {
return nil , fmt . Errorf ( "Invalid numeric specifier." )
}
i ++ // Skip comma
for i < len ( re_postfix ) && unicode . IsDigit ( re_postfix [ i ] ) {
endRange = append ( endRange , re_postfix [ i ] )
i ++
}
if i == len ( re_postfix ) {
return nil , fmt . Errorf ( "Brace not closed." )
}
if re_postfix [ i ] != '}' {
return nil , fmt . Errorf ( "Invalid numeric specifier." )
}
if len ( endRange ) == 0 { // Case 3 above
endRangeNum = INFINITE_REPS
} else { // Case 2 above
var err error
endRangeNum , err = strconv . Atoi ( string ( endRange ) )
if err != nil {
panic ( err )
}
}
}
idx := len ( outQueue ) - 1
// Get the last added node
if idx < 0 || outQueue [ idx ] . nodetype == LPAREN {
return nil , fmt . Errorf ( "Numeric specifier with no content." )
}
outQueue [ idx ] . startReps = startRangeNum
outQueue [ idx ] . endReps = endRangeNum
}
if c == '(' || c == NONCAPLPAREN_CHAR {
opStack = append ( opStack , c )
if c == '(' { // We only push _capturing_ group parentheses to outQueue
outQueue = append ( outQueue , newPostfixNode ( c ) )
}
numOpenParens ++
}
if c == ')' {
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Panic if we reach the end of the stack.
var val rune
var err error
for val , err = peek ( opStack ) ; val != '(' && val != NONCAPLPAREN_CHAR ; val , err = peek ( opStack ) {
if err != nil {
return nil , fmt . Errorf ( "Imbalanced parantheses." )
}
to_append := mustPop ( & opStack )
outQueue = append ( outQueue , newPostfixNode ( to_append ) )
}
_ = mustPop ( & opStack ) // Get rid of opening parentheses
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
outQueue = append ( outQueue , newPostfixNode ( ')' ) ) // Add closing parentheses
}
numOpenParens --
}
}
// Pop all remaining operators (and append to outQueue)
for len ( opStack ) > 0 {
to_append := mustPop ( & opStack )
outQueue = append ( outQueue , newPostfixNode ( to_append ) )
}
if numOpenParens != 0 {
return nil , fmt . Errorf ( "Imbalanced parantheses." )
}
return outQueue , nil
}
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
// Returns start state and number of groups in regex.
func thompson ( re [ ] postfixNode ) ( Reg , error ) {
nfa := make ( [ ] * State , 0 ) // Stack of states
numGroups := 0 // Number of capturing groups
for _ , c := range re {
if c . nodetype == CHARACTER || c . nodetype == ASSERTION {
state := State { }
state . transitions = make ( map [ int ] [ ] * State )
if c . allChars {
state . allChars = true
if len ( c . except ) != 0 {
// For each node that I am 'excepting' (eg. in an inverted character class):
// - If the node itself has exceptions, then the exceptions cancel out.
// Eg. [^\w] == [\W]
// - Since an allChars node is the only kind that _can_ have exceptions, that's what I check for.
// - If the node doesn't have exceptions (allChars == false) then the contents of the node are added to the except list.
for _ , node := range c . except {
if node . allChars {
state . allChars = false
// For each postfixNode in node.except, extract the contents of the postfixNode. Concatenate them all,
// and them to the state's _content_. As mentioned above, if the exception has exceptions, then we can match
// those.
nodeExceptChars := slices . Concat ( Map ( node . except , func ( node postfixNode ) [ ] rune {
return node . contents
} ) ... )
state . content = rune2Contents ( nodeExceptChars )
} else {
state . except = append ( state . except , node . contents ... )
}
}
}
}
// Convert the current contents to []int, convert the result of rune2contents to []int, append then
// convert back to stateContents.
state . content = stateContents ( append ( [ ] int ( state . content ) , [ ] int ( rune2Contents ( c . contents ) ) ... ) )
state . output = make ( [ ] * State , 0 )
state . output = append ( state . output , & state )
state . isEmpty = false
if c . nodetype == ASSERTION {
state . isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
state . content = newContents ( EPSILON ) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
if c . lookaroundDir == 0 || c . lookaroundSign == 0 {
switch c . contents [ 0 ] {
case '^' :
state . assert = SOS
case '$' :
state . assert = EOS
case 'b' :
state . assert = WBOUND
case 'B' :
state . assert = NONWBOUND
}
} else { // Lookaround
state . lookaroundRegex = string ( c . contents )
if c . lookaroundDir == LOOKAHEAD {
if c . lookaroundSign == POSITIVE {
state . assert = PLA
}
if c . lookaroundSign == NEGATIVE {
state . assert = NLA
}
}
if c . lookaroundDir == LOOKBEHIND {
if c . lookaroundSign == POSITIVE {
state . assert = PLB
}
if c . lookaroundSign == NEGATIVE {
state . assert = NLB
}
}
tmpRe , err := shuntingYard ( state . lookaroundRegex )
if err != nil {
return Reg { } , fmt . Errorf ( "Error parsing lookaround: %w" , err )
}
reg , err := thompson ( tmpRe )
if err != nil {
return Reg { } , fmt . Errorf ( "Error compiling lookaround: %w" , err )
}
state . lookaroundNFA = reg . start
state . lookaroundNumCaptureGroups = reg . numGroups
}
}
// Replace ESC_BACKSLASH with actual backslash, so that we can actually check if we encounter it
replaceByValue ( [ ] int ( state . content ) , int ( ESC_BACKSLASH ) , '\\' )
// Uncommenting this seems to make one of the test cases fail. Why?
// replaceByValue(state.except, ESC_BACKSLASH, '\\')
nfa = append ( nfa , & state )
}
if c . nodetype == LPAREN || c . nodetype == RPAREN {
s := & State { }
s . assert = NONE
s . content = newContents ( EPSILON )
s . isEmpty = true
s . output = make ( [ ] * State , 0 )
s . output = append ( s . output , s )
s . transitions = make ( map [ int ] [ ] * State )
// LPAREN nodes are just added normally
if c . nodetype == LPAREN {
numGroups ++
s . groupBegin = true
s . groupNum = numGroups
nfa = append ( nfa , s )
continue
}
// For RPAREN nodes, I assume that the last two nodes in the list are an LPAREN,
// and then some other node.
// These three nodes (LPAREN, the middle node and RPAREN) are extracted together, concatenated
// and added back in.
if c . nodetype == RPAREN {
s . groupEnd = true
middleNode := mustPop ( & nfa )
lparenNode := mustPop ( & nfa )
s . groupNum = lparenNode . groupNum
tmp := concatenate ( lparenNode , middleNode )
to_add := concatenate ( tmp , s )
nfa = append ( nfa , to_add )
}
}
if c . nodetype == CHARCLASS { // A Character class consists of all the nodes in it, alternated
// Map the list of nodes to a list of states, each state containing the contents of a specific node
states := Map ( c . nodeContents , func ( node postfixNode ) * State {
s := newState ( )
s . content = rune2Contents ( node . contents )
return & s
} )
// Reduce the list of states down to a single state by alternating them
toAdd := Reduce ( states , func ( s1 * State , s2 * State ) * State {
return alternate ( s1 , s2 )
} )
nfa = append ( nfa , toAdd )
}
// Must be an operator if it isn't a character
switch c . nodetype {
case CONCATENATE :
s2 := mustPop ( & nfa )
s1 := mustPop ( & nfa )
s1 = concatenate ( s1 , s2 )
nfa = append ( nfa , s1 )
case KLEENE : // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
s1 := mustPop ( & nfa )
stateToAdd := kleene ( * s1 )
nfa = append ( nfa , stateToAdd )
case PLUS : // a+ is equivalent to aa*
s1 := mustPop ( & nfa )
s2 := kleene ( * s1 )
s1 = concatenate ( s1 , s2 )
nfa = append ( nfa , s1 )
case QUESTION : // ab? is equivalent to a(b|)
s1 := mustPop ( & nfa )
s2 := question ( s1 )
nfa = append ( nfa , s2 )
case PIPE :
s1 := mustPop ( & nfa )
s2 := mustPop ( & nfa )
s3 := alternate ( s1 , s2 )
nfa = append ( nfa , s3 )
}
if c . startReps != 1 || c . endReps != 1 { // Must have a numeric specifier attached to it
if c . endReps != - 1 && c . endReps < c . startReps {
return Reg { } , fmt . Errorf ( "Numeric specifier - start greater than end." )
}
state := mustPop ( & nfa )
var stateToAdd * State = nil
// Take advantage of the following facts:
// a{5} == aaaaa
// a{3,5} == aaaa?a?
// a{5,} == aaaaa+
// Nov. 3 2024 - I have two choices on how I want to implement numeric
// specifiers.
// a. Encode the logic while creating the states. I will have to create a function
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
// not work). Creating this function might be a lot of work.
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
// at this point, I can leave thompson untouched.
for i := 0 ; i < c . startReps ; i ++ { // Case 1
stateToAdd = concatenate ( stateToAdd , cloneState ( state ) )
}
if c . endReps == INFINITE_REPS { // Case 3
s2 := kleene ( * state )
stateToAdd = concatenate ( stateToAdd , s2 )
} else { // Case 2
for i := c . startReps ; i < c . endReps ; i ++ {
stateToAdd = concatenate ( stateToAdd , question ( cloneState ( state ) ) )
}
}
nfa = append ( nfa , stateToAdd )
}
}
if len ( nfa ) != 1 {
return Reg { } , fmt . Errorf ( "Invalid Regex." )
}
verifyLastStates ( nfa )
return Reg { nfa [ 0 ] , numGroups } , nil
}
// Compiles the given regular expression into a Reg type, suitable for use with the
// matching functions. The second return value is non-nil if a compilation error has
// occured. As such, the error value must be checked before using the Reg returned by this function.
// The second parameter is an optional list of flags, passed to the parsing function shuntingYard.
func Compile ( re string , flags ... ReFlag ) ( Reg , error ) {
nodes , err := shuntingYard ( re , flags ... )
if err != nil {
return Reg { } , fmt . Errorf ( "Error parsing regex: %w" , err )
}
reg , err := thompson ( nodes )
if err != nil {
return Reg { } , fmt . Errorf ( "Error compiling regex: %w" , err )
}
return reg , nil
}