You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

628 lines
21 KiB
Go

3 months ago
package main
import (
"bufio"
"flag"
3 months ago
"fmt"
"io"
"os"
3 months ago
"slices"
"strconv"
"unicode"
"github.com/fatih/color"
3 months ago
)
const CONCAT rune = '~'
var notDotChars []rune
3 months ago
func isOperator(c rune) bool {
if c == '+' || c == '?' || c == '*' || c == '|' || c == CONCAT {
3 months ago
return true
}
return false
}
/* priority returns the priority of the given operator */
func priority(op rune) int {
precedence := []rune{'|', CONCAT, '+', '*', '?'}
3 months ago
return slices.Index(precedence, op)
}
/*
3 months ago
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
The primary benefit of this is getting rid of parentheses.
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
3 months ago
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
*/
func shuntingYard(re string) []postfixNode {
3 months ago
re_postfix := make([]rune, 0)
3 months ago
re_runes := []rune(re) // Convert the string to a slice of runes to allow iteration through it
/* Add concatenation operators.
Only add a concatenation operator between two characters if both the following conditions are met:
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
3 months ago
a. This makes sense, because these operators can't be _concatenated_ with anything else.
2. The second character isn't a 'closing operator' - one that applies to something before it
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
Caveats:
1. Don't mess with anything inside brackets - character class
2. Don't mess with anything inside braces - numeric repetition
3. Don't mess with any lookarounds.
3 months ago
*/
i := 0
for i < len(re_runes) {
3 months ago
re_postfix = append(re_postfix, re_runes[i])
if re_runes[i] == '[' && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped. Inside this block, the only task is to expand character ranges into their constituent characters.
re_postfix[len(re_postfix)-1] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
toAppend := make([]rune, 0) // Holds all the runes in the current character class
if i < len(re_runes)-1 && re_runes[i+1] == '^' { // Inverting class - match everything NOT in brackets
re_postfix = append(re_postfix, '^')
i++ // Skip opening bracket and caret
}
if i < len(re_runes)-1 && re_runes[i+1] == ']' { // Nothing inside brackets - panic.
panic("Empty character class.")
}
for re_runes[i] != ']' {
i++ // Skip all characters inside brackets
// TODO: Check for escaped characters
// Check ahead for character range
if i < len(re_runes)-2 && re_runes[i+1] == '-' {
rangeStart := re_runes[i]
rangeEnd := re_runes[i+2]
if int(rangeEnd) < int(rangeStart) {
panic("Range is out of order.")
}
for i := rangeStart; i <= rangeEnd; i++ {
toAppend = append(toAppend, i)
}
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
continue
}
toAppend = append(toAppend, re_runes[i])
}
// Replace the last character (which should have been ']', with RBRACKET
toAppend[len(toAppend)-1] = RBRACKET
re_postfix = append(re_postfix, toAppend...)
}
if i < len(re_runes) && re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
i++ // Skip opening brace
for i < len(re_runes) && re_runes[i] != '}' {
re_postfix = append(re_postfix, re_runes[i])
i++
}
if i == len(re_runes) {
panic("Invalid numeric specifier.")
}
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
}
if i < len(re_runes) && re_runes[i] == '(' && (i == 0 || re_runes[i-1] != '\\') && (i < len(re_runes)-1 && re_runes[i+1] == '?') { // Unescaped open parentheses followed by question mark = lokaround. Don't mess with it.
i++ // Step inside
if i == len(re_runes)-1 || (re_runes[i+1] != '=' && re_runes[i+1] != '!' && re_runes[i+1] != '<') {
panic("Invalid regex. Lookaround intended?")
}
re_postfix = append(re_postfix, re_runes[i])
i++
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_runes) {
panic("Unclosed lookaround.")
}
if re_runes[i] == '(' {
numOpenParens++
}
if re_runes[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
re_postfix = append(re_postfix, re_runes[i])
i++
}
continue
}
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
3 months ago
if i < len(re_runes)-1 {
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
3 months ago
re_postfix = append(re_postfix, CONCAT)
}
}
}
i++
3 months ago
}
opStack := make([]rune, 0) // Operator stack
outQueue := make([]postfixNode, 0) // Output queue
3 months ago
// Actual algorithm
numOpenParens := 0 // Number of open parentheses
for i := 0; i < len(re_postfix); i++ {
3 months ago
/* Two cases:
1. Current character is alphanumeric - send to output queue
2. Current character is operator - do the following:
a. If current character has greater priority than top of opStack, push to opStack.
b. If not, keep popping from opStack (and appending to outQueue) until:
i. opStack is empty, OR
ii. current character has greater priority than top of opStack
3. If current character is '(', push to opStack
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
3 months ago
*/
c := re_postfix[i]
if isNormalChar(c) {
outQueue = append(outQueue, newPostfixNode(c))
continue
3 months ago
}
// Escape character
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
panic("ERROR: Backslash with no escape character.")
}
i++
outQueue = append(outQueue, newEscapedNode(re_postfix[i]))
continue // Escaped character will automatically be skipped when loop variable increments
}
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
outQueue = append(outQueue, newPostfixDotNode())
continue
}
if c == '^' { // Start-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
if c == '$' { // End-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
// Check if we're at the start of a lookaround
if c == '(' && i < len(re_postfix)-1 && re_postfix[i+1] == '?' {
i += 2 // Skip opening paren and question mark
regex := "" // Stores lookaround regex
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_postfix) {
panic("Unclosed lookaround.")
}
if re_postfix[i] == '(' {
numOpenParens++
}
if re_postfix[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
regex += string(re_postfix[i])
i++
}
if regex[len(regex)-1] == ')' { // The closing paren would have also been added. Let's remove that.
regex = regex[:len(regex)-1]
}
if len(regex) <= 1 { // Nothing in regex - panic
panic("Invalid lookaround. (too short?)")
}
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
// Now we should filter that out.
toAppend := postfixNode{nodetype: ASSERTION, startReps: 1, endReps: 1}
if regex[0] == '<' { // Lookbehind
toAppend.lookaroundDir = LOOKBEHIND
regex = regex[1:]
} else if regex[0] == '=' || regex[0] == '!' {
toAppend.lookaroundDir = LOOKAHEAD
} else {
panic("Invalid lookaround.")
}
// Positive or negative
if regex[0] == '=' { // Positive
toAppend.lookaroundSign = POSITIVE
toAppend.contents = []rune(regex[1:])
} else if regex[0] == '!' { // Negative
toAppend.lookaroundSign = NEGATIVE
toAppend.contents = []rune(regex[1:])
} else {
panic("Invalid lookaround.")
}
outQueue = append(outQueue, toAppend)
continue
}
3 months ago
if isOperator(c) {
if len(opStack) == 0 {
opStack = append(opStack, c)
} else {
topStack, err := peek(opStack)
if err != nil {
panic("ERROR: Operator without operand.")
}
if priority(c) > priority(topStack) { // 2a
3 months ago
opStack = append(opStack, c)
} else {
for priority(c) <= priority(topStack) { // 2b
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
topStack, _ = peek(opStack)
3 months ago
}
opStack = append(opStack, c)
}
}
}
if c == LBRACKET { // Used for character classes
i++ // Step forward so we can look at the character class
var invertMatch bool
if re_postfix[i] == '^' {
invertMatch = true
i++
}
chars := make([]rune, 0) // List of characters - used only for character classes
for i < len(re_postfix) {
if re_postfix[i] == RBRACKET {
break
}
chars = append(chars, re_postfix[i])
i++
}
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
panic("ERROR: Opening bracket without closing bracket.")
}
if !invertMatch {
outQueue = append(outQueue, newPostfixCharNode(chars...))
} else {
// Invert match - create an allChars postfixNode, then add the given states to its 'except' list.
toAdd := newPostfixDotNode()
toAdd.except = chars
outQueue = append(outQueue, toAdd)
}
continue
}
if c == '{' {
i++ // Skip opening brace
// Three possibilities:
// 1. Single number - {5}
// 2. Range - {3,5}
// 3. Start with no end, {3,}
startRange := make([]rune, 0)
startRangeNum := 0
endRange := make([]rune, 0)
endRangeNum := 0
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
startRange = append(startRange, re_postfix[i])
i++
}
if len(startRange) == 0 { // {} is not valid, neither is {,5}
panic("ERROR: Invalid numeric specifier.")
}
if i == len(re_postfix) {
panic("ERROR: Brace not closed.")
}
startRangeNum, err := strconv.Atoi(string(startRange))
if err != nil {
panic(err)
}
if re_postfix[i] == '}' { // Case 1 above
endRangeNum = startRangeNum
} else {
if re_postfix[i] != ',' {
panic("ERROR: Invalid numeric specifier.")
}
i++ // Skip comma
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
endRange = append(endRange, re_postfix[i])
i++
}
if i == len(re_postfix) {
panic("ERROR: Brace not closed.")
}
if re_postfix[i] != '}' {
panic("ERROR: Invalid numeric specifier.")
}
if len(endRange) == 0 { // Case 3 above
endRangeNum = INFINITE_REPS
} else { // Case 2 above
var err error
endRangeNum, err = strconv.Atoi(string(endRange))
if err != nil {
panic(err)
}
}
}
node, err := pop(&outQueue)
if err != nil {
panic("Numeric specifier with no content.")
}
node.startReps = startRangeNum
node.endReps = endRangeNum
outQueue = append(outQueue, node)
}
3 months ago
if c == '(' {
opStack = append(opStack, c)
numOpenParens++
3 months ago
}
if c == ')' {
// Keep popping from opStack until we encounter an opening parantheses. Panic if we reach the end of the stack.
for val, err := peek(opStack); val != '('; val, err = peek(opStack) {
if err != nil {
panic("ERROR: Imbalanced parantheses.")
}
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
3 months ago
}
_ = mustPop(&opStack) // Get rid of opening parantheses
numOpenParens--
3 months ago
}
}
// Pop all remaining operators (and append to outQueue)
for len(opStack) > 0 {
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
3 months ago
}
if numOpenParens != 0 {
panic("ERROR: Imbalanced parantheses.")
}
return outQueue
3 months ago
}
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
// Returns start state.
func thompson(re []postfixNode) *State {
nfa := make([]*State, 0) // Stack of states
3 months ago
for _, c := range re {
if c.nodetype == CHARACTER || c.nodetype == ASSERTION {
3 months ago
state := State{}
state.transitions = make(map[int][]*State)
if c.allChars {
state.allChars = true
if len(c.except) != 0 {
state.except = append([]rune{}, c.except...)
}
}
state.content = rune2Contents(c.contents)
3 months ago
state.output = make([]*State, 0)
state.output = append(state.output, &state)
state.isEmpty = false
if c.nodetype == ASSERTION {
state.isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
state.content = newContents(EPSILON) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
if c.lookaroundDir == 0 || c.lookaroundSign == 0 {
switch c.contents[0] {
case '^':
state.assert = SOS
case '$':
state.assert = EOS
case 'b':
state.assert = WBOUND
case 'B':
state.assert = NONWBOUND
}
} else { // Lookaround
state.lookaroundRegex = string(c.contents)
if c.lookaroundDir == LOOKAHEAD {
if c.lookaroundSign == POSITIVE {
state.assert = PLA
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLA
}
}
if c.lookaroundDir == LOOKBEHIND {
if c.lookaroundSign == POSITIVE {
state.assert = PLB
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLB
}
}
}
}
nfa = append(nfa, &state)
3 months ago
}
// Must be an operator if it isn't a character
switch c.nodetype {
case CONCATENATE:
s2 := mustPop(&nfa)
s1 := mustPop(&nfa)
s1 = concatenate(s1, s2)
3 months ago
nfa = append(nfa, s1)
case KLEENE: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
s1 := mustPop(&nfa)
stateToAdd := kleene(*s1)
nfa = append(nfa, stateToAdd)
case PLUS: // a+ is equivalent to aa*
s1 := mustPop(&nfa)
s2 := kleene(*s1)
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case QUESTION: // ab? is equivalent to a(b|)
s1 := mustPop(&nfa)
s2 := question(s1)
nfa = append(nfa, s2)
case PIPE:
s1 := mustPop(&nfa)
s2 := mustPop(&nfa)
s3 := alternate(s1, s2)
nfa = append(nfa, s3)
3 months ago
}
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
if c.endReps != -1 && c.endReps < c.startReps {
panic("ERROR: Numeric specifier - start greater than end.")
}
state := mustPop(&nfa)
var stateToAdd *State = nil
// Take advantage of the following facts:
// a{5} == aaaaa
// a{3,5} == aaaa?a?
// a{5,} == aaaaa+
// Nov. 3 2024 - I have two choices on how I want to implement numeric
// specifiers.
// a. Encode the logic while creating the states. I will have to create a function
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
// not work). Creating this function might be a lot of work.
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
// at this point, I can leave thompson untouched.
for i := 0; i < c.startReps; i++ { // Case 1
stateToAdd = concatenate(stateToAdd, cloneState(state))
}
if c.endReps == INFINITE_REPS { // Case 3
s2 := kleene(*state)
stateToAdd = concatenate(stateToAdd, s2)
} else { // Case 2
for i := c.startReps; i < c.endReps; i++ {
stateToAdd = concatenate(stateToAdd, question(state))
}
}
nfa = append(nfa, stateToAdd)
}
3 months ago
}
if len(nfa) != 1 {
panic("ERROR: Invalid Regex.")
}
verifyLastStates(nfa)
return nfa[0]
}
func main() {
invertFlag := flag.Bool("v", false, "Invert match.")
// This flag has two 'modes':
// 1. Without '-v': Prints only matches. Prints a newline after every match.
// 2. With '-v': Substitutes all matches with empty string.
onlyFlag := flag.Bool("o", false, "Print only colored content. Overrides -l.")
lineFlag := flag.Bool("l", false, "Only print lines with a match (or with no matches, if -v is enabled). Similar to grep's default.")
multiLineFlag := flag.Bool("t", false, "Multi-line mode. Treats newline just like any character.")
printMatchesFlag := flag.Bool("p", false, "Prints start and end index of each match. Can only be used with '-t' for multi-line mode.")
flag.Parse()
// In multi-line mode, 'dot' metacharacter also matches newline
if !(*multiLineFlag) {
notDotChars = []rune{'\n'}
} else {
notDotChars = []rune{}
}
// -l and -o are mutually exclusive: -o overrides -l
if *onlyFlag {
*lineFlag = false
}
// Process:
// 1. Convert regex into postfix notation (Shunting-Yard algorithm)
// a. Add explicit concatenation operators to facilitate this
// 2. Build NFA from postfix representation (Thompson's algorithm)
// 3. Run the string against the NFA
if len(flag.Args()) != 1 { // flag.Args() also strips out program name
fmt.Println("ERROR: Missing cmdline args")
os.Exit(22)
}
3 months ago
var re string
re = flag.Args()[0]
var test_str string
var test_runes []rune // Rune-slice representation of test_str
var err error
var linesRead bool // Whether or not we have read the lines in the file
// Create reader for stdin and writer for stdout
reader := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
3 months ago
re_postfix := shuntingYard(re)
startState := thompson(re_postfix)
for true {
if linesRead {
break
}
if !(*multiLineFlag) {
// Read every string from stdin until we encounter an error. If the error isn't EOF, panic.
test_str, err = reader.ReadString('\n')
if err != nil {
if err == io.EOF {
linesRead = true
} else {
panic(err)
}
}
} else {
// Multi-line mode - read every line of input into a temp. string.
// test_str will contain all lines of input (including newline characters)
// as one string.
var temp string
for temp, err = reader.ReadString('\n'); err == nil; temp, err = reader.ReadString('\n') {
test_str += temp
}
// Assuming err != nil
if err == io.EOF {
linesRead = true
} else {
panic(err)
}
}
test_runes = []rune(test_str)
matchIndices := findAllMatches(startState, []rune(test_runes))
if *printMatchesFlag {
for _, idx := range matchIndices {
fmt.Printf("%s\n", idx.toString())
}
continue
}
// Decompose the array of matchIndex structs into a flat unique array of ints - if matchIndex is {4,7}, flat array will contain 4,5,6
// This should make checking O(1) instead of O(n)
indicesToPrint := new_uniq_arr[int]()
for _, idx := range matchIndices {
indicesToPrint.add(genRange(idx.startIdx, idx.endIdx)...)
}
// If we are inverting, then we should print the indices which _didn't_ match
// in color.
if *invertFlag {
oldIndices := indicesToPrint.values()
indicesToPrint = new_uniq_arr[int]()
// Explanation:
// Find all numbers from 0 to len(test_str) that are NOT in oldIndices.
// These are the values we want to print, now that we have inverted the match.
// Re-initialize indicesToPrint and add all of these values to it.
indicesToPrint.add(setDifference(genRange(0, len(test_runes)), oldIndices)...)
}
// If lineFlag is enabled, we should only print something if:
// a. We are not inverting, and have at least one match on the current line
// OR
// b. We are inverting, and have no matches at all on the current line.
// This checks for the inverse, and continues if it is true.
if *lineFlag {
if !(*invertFlag) && len(matchIndices) == 0 || *invertFlag && len(matchIndices) > 0 {
continue
}
}
for i, c := range test_runes {
if indicesToPrint.contains(i) {
color.New(color.FgRed).Fprintf(out, "%c", c)
// Newline after every match - only if -o is enabled and -v is disabled.
if *onlyFlag && !(*invertFlag) {
for _, idx := range matchIndices {
if i+1 == idx.endIdx { // End index is one more than last index of match
fmt.Fprintf(out, "\n")
break
}
}
}
} else {
if !(*onlyFlag) {
fmt.Fprintf(out, "%c", c)
}
}
}
err = out.Flush()
if err != nil {
panic(err)
}
}
3 months ago
}