You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

283 lines
9.9 KiB
Go

3 months ago
package main
import (
"slices"
)
3 months ago
const EPSILON int = 0
type assertType int
const (
NONE assertType = iota
SOS
EOS
WBOUND
NONWBOUND
PLA // Positive lookahead
NLA // Negative lookahead
PLB // Positive lookbehind
NLB // Negative lookbehind
)
3 months ago
type State struct {
content stateContents // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output []*State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
transitions map[int][]*State // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
}
// Clones the NFA starting from the given state.
func cloneState(start *State) *State {
return cloneStateHelper(start, make(map[*State]*State))
}
// Helper function for clone. The map is used to keep track of which states have
// already been copied, and which ones haven't.
// This function was created using output from Llama3.1:405B.
func cloneStateHelper(state *State, cloneMap map[*State]*State) *State {
// Base case - if the clone exists in our map, return it.
if clone, exists := cloneMap[state]; exists {
return clone
}
// Recursive case - if the clone doesn't exist, create it, add it to the map,
// and recursively call for each of the transition states.
clone := &State{
content: append([]int{}, state.content...),
isEmpty: state.isEmpty,
isLast: state.isLast,
output: make([]*State, len(state.output)),
transitions: make(map[int][]*State),
isKleene: state.isKleene,
assert: state.assert,
zeroMatchFound: state.zeroMatchFound,
allChars: state.allChars,
except: append([]rune{}, state.except...),
lookaroundRegex: state.lookaroundRegex,
}
cloneMap[state] = clone
for i, s := range state.output {
if s == state {
clone.output[i] = clone
} else {
clone.output[i] = cloneStateHelper(s, cloneMap)
}
}
for k, v := range state.transitions {
clone.transitions[k] = make([]*State, len(v))
for i, s := range v {
if s == state {
clone.transitions[k][i] = clone
} else {
clone.transitions[k][i] = cloneStateHelper(s, cloneMap)
}
}
}
return clone
}
// Checks if the given state's assertion is true. Returns true if the given
// state doesn't have an assertion.
func (s State) checkAssertion(str []rune, idx int) bool {
if s.assert == SOS {
return idx == 0
}
if s.assert == EOS {
return idx == len(str)
}
if s.assert == WBOUND {
return isWordBoundary(str, idx)
}
if s.assert == NONWBOUND {
return !isWordBoundary(str, idx)
}
if s.assert == PLA || s.assert == PLB || s.assert == NLA || s.assert == NLB { // Lookaround
// The process here is simple:
// 1. Compile the regex stored in the state's contents.
// 2. Run it on the test string.
// 3. Based on the kind of lookaround (and the indices we get), determine what action to take.
regex := s.lookaroundRegex
re_postfix := shuntingYard(regex)
startState := thompson(re_postfix)
matchIndices := findAllMatches(startState, str)
numMatchesFound := 0
for _, matchIdx := range matchIndices {
if s.assert == PLA || s.assert == NLA { // Lookahead - return true (or false) if at least one match starts at the current index
if matchIdx.startIdx == idx {
numMatchesFound++
}
}
if s.assert == PLB || s.assert == NLB { // Lookbehind - return true (or false) if at least one match _ends_ at the current index.
if matchIdx.endIdx == idx {
numMatchesFound++
}
}
}
if s.assert == PLA || s.assert == PLB { // Positive assertions want at least one match
return numMatchesFound > 0
}
if s.assert == NLA || s.assert == NLB { // Negative assertions only want zero matches
return numMatchesFound == 0
}
}
return true
}
// Returns true if the contents of 's' contain the value at the given index of the given string
func (s State) contentContains(str []rune, idx int) bool {
if s.assert != NONE {
return s.checkAssertion(str, idx)
}
if s.allChars {
return !slices.Contains(slices.Concat(notDotChars, s.except), str[idx]) // Return true only if the index isn't a 'notDotChar', or isn't one of the exception characters for the current node.
}
// Default - s.assert must be NONE
return slices.Contains(s.content, int(str[idx]))
}
// Returns the matches for the character at the given index of the given string.
// Also returns the number of matches. Returns -1 if an assertion failed.
func (s State) matchesFor(str []rune, idx int) ([]*State, int) {
// Assertions can be viewed as 'checks'. If the check fails, we return
// an empty array and 0.
// If it passes, we treat it like any other state, and return all the transitions.
if s.assert != NONE {
if s.checkAssertion(str, idx) == false {
return make([]*State, 0), -1
}
}
listTransitions := s.transitions[int(str[idx])]
for _, dest := range s.transitions[int(ANY_CHAR)] {
if !slices.Contains(slices.Concat(notDotChars, dest.except), str[idx]) {
// Add an allChar state to the list of matches if:
// a. The current character isn't a 'notDotChars' character. In single line mode, this includes newline. In multiline mode, it doesn't.
// b. The current character isn't the state's exception list.
listTransitions = append(listTransitions, dest)
}
}
numTransitions := len(listTransitions)
return listTransitions, numTransitions
3 months ago
}
type NFA struct {
start State
outputs []State
}
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
func verifyLastStatesHelper(state *State, visited map[*State]bool) {
if len(state.transitions) == 0 {
state.isLast = true
return
}
// if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a*
if len(state.transitions) == 1 { // Eg. a*
var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one
for _, c := range state.content {
if len(state.transitions[c]) != 1 || state.transitions[c][0] != state {
moreThanOneTrans = true
}
}
state.isLast = !moreThanOneTrans
}
if state.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
transitionDests := make([]*State, 0)
for _, v := range state.transitions {
transitionDests = append(transitionDests, v...)
}
if allEqual(transitionDests...) {
state.isLast = true
return
}
}
3 months ago
if visited[state] == true {
return
}
visited[state] = true
for _, states := range state.transitions {
for i := range states {
if states[i] != state {
verifyLastStatesHelper(states[i], visited)
}
3 months ago
}
}
}
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
func verifyLastStates(start []*State) {
verifyLastStatesHelper(start[0], make(map[*State]bool))
3 months ago
}
// Concatenates s1 and s2, returns the start of the concatenation.
func concatenate(s1 *State, s2 *State) *State {
if s1 == nil {
return s2
}
for i := range s1.output {
for _, c := range s2.content { // Create transitions for every element in s1's content to s2'
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], s2)
}
}
s1.output = s2.output
return s1
}
func kleene(s1 State) *State {
toReturn := &State{}
toReturn.transitions = make(map[int][]*State)
toReturn.content = newContents(EPSILON)
toReturn.isEmpty = true
toReturn.isKleene = true
toReturn.output = append(toReturn.output, toReturn)
for i := range s1.output {
for _, c := range toReturn.content {
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], toReturn)
}
}
for _, c := range s1.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], &s1)
}
return toReturn
}
func alternate(s1 *State, s2 *State) *State {
toReturn := &State{}
toReturn.transitions = make(map[int][]*State)
toReturn.output = append(toReturn.output, s1.output...)
toReturn.output = append(toReturn.output, s2.output...)
// Unique append is used here (and elsewhere) to ensure that,
// for any given transition, a state can only be mentioned once.
// For example, given the transition 'a', the state 's1' can only be mentioned once.
// This would lead to multiple instances of the same set of match indices, since both
// 's1' states would be considered to match.
for _, c := range s1.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s1)
}
for _, c := range s2.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s2)
}
toReturn.content = newContents(EPSILON)
toReturn.isEmpty = true
return toReturn
}
func question(s1 *State) *State { // Use the fact that ab? == a(b|)
s2 := &State{}
s2.transitions = make(map[int][]*State)
s2.content = newContents(EPSILON)
s2.output = append(s2.output, s2)
s2.isEmpty = true
s3 := alternate(s1, s2)
return s3
}