package main
const EPSILON int = 0
type State struct {
content int // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output [ ] * State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
transitions map [ int ] [ ] * State // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
}
type NFA struct {
start State
outputs [ ] State
}
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
func verifyLastStatesHelper ( state * State , visited map [ * State ] bool ) {
if len ( state . transitions ) == 0 {
state . isLast = true
return
}
if len ( state . transitions ) == 1 && len ( state . transitions [ state . content ] ) == 1 && state . transitions [ state . content ] [ 0 ] == state { // Eg. a*
state . isLast = true
return
}
if len ( state . transitions ) == 1 && state . isKleene { // A State representing a Kleene Star has a transition going out, which loops back to it. If that is the only transition (and it contains only one state), then it must be a last-state
for _ , v := range state . transitions { // Should only loop once
if len ( v ) == 1 {
state . isLast = true
return
}
}
}
if visited [ state ] == true {
return
}
visited [ state ] = true
for _ , states := range state . transitions {
for i := range states {
if states [ i ] != state {
verifyLastStatesHelper ( states [ i ] , visited )
}
}
}
}
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
func verifyLastStates ( start [ ] * State ) {
verifyLastStatesHelper ( start [ 0 ] , make ( map [ * State ] bool ) )
}
func concatenate ( s1 * State , s2 * State ) * State {
for i := range s1 . output {
s1 . output [ i ] . transitions [ s2 . content ] = unique_append ( s1 . output [ i ] . transitions [ s2 . content ] , s2 )
}
s1 . output = s2 . output
return s1
}
func kleene ( s1 State ) * State {
toReturn := & State { }
toReturn . transitions = make ( map [ int ] [ ] * State )
toReturn . content = EPSILON
toReturn . isEmpty = true
toReturn . isKleene = true
toReturn . output = append ( toReturn . output , toReturn )
for i := range s1 . output {
s1 . output [ i ] . transitions [ toReturn . content ] = unique_append ( s1 . output [ i ] . transitions [ toReturn . content ] , toReturn )
}
toReturn . transitions [ s1 . content ] = unique_append ( toReturn . transitions [ s1 . content ] , & s1 )
return toReturn
}
func alternate ( s1 * State , s2 * State ) * State {
toReturn := & State { }
toReturn . transitions = make ( map [ int ] [ ] * State )
toReturn . output = append ( toReturn . output , s1 . output ... )
toReturn . output = append ( toReturn . output , s2 . output ... )
// Unique append is used here (and elsewhere) to ensure that,
// for any given transition, a state can only be mentioned once.
// For example, given the transition 'a', the state 's1' can only be mentioned once.
// This would lead to multiple instances of the same set of match indices, since both
// 's1' states would be considered to match.
toReturn . transitions [ s1 . content ] = unique_append ( toReturn . transitions [ s1 . content ] , s1 )
toReturn . transitions [ s2 . content ] = unique_append ( toReturn . transitions [ s2 . content ] , s2 )
toReturn . content = EPSILON
toReturn . isEmpty = true
return toReturn
}