|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"os"
|
|
|
|
"slices"
|
|
|
|
|
|
|
|
"github.com/fatih/color"
|
|
|
|
)
|
|
|
|
|
|
|
|
const CONCAT rune = '~'
|
|
|
|
|
|
|
|
func isOperator(c rune) bool {
|
|
|
|
if c == '+' || c == '?' || c == '*' || c == '|' || c == CONCAT {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
/* priority returns the priority of the given operator */
|
|
|
|
func priority(op rune) int {
|
|
|
|
precedence := []rune{'|', CONCAT, '+', '*', '?'}
|
|
|
|
return slices.Index(precedence, op)
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
|
|
|
|
The primary benefit of this is getting rid of parentheses.
|
|
|
|
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
|
|
|
|
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
|
|
|
|
*/
|
|
|
|
func shuntingYard(re string) string {
|
|
|
|
re_postfix := make([]rune, 0)
|
|
|
|
re_runes := []rune(re) // Convert the string to a slice of runes to allow iteration through it
|
|
|
|
/* Add concatenation operators.
|
|
|
|
Only add a concatenation operator between two characters if both the following conditions are met:
|
|
|
|
1. The first character isn't an opening parantheses or alteration operator.
|
|
|
|
a. This makes sense, because these operators can't be _concatenated_ with anything else.
|
|
|
|
2. The second character isn't a 'closing operator' - one that applies to something before it
|
|
|
|
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
|
|
|
|
*/
|
|
|
|
for i := 0; i < len(re_runes); i++ {
|
|
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
|
|
if re_runes[i] != '(' && re_runes[i] != '|' {
|
|
|
|
if i < len(re_runes)-1 {
|
|
|
|
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' {
|
|
|
|
re_postfix = append(re_postfix, CONCAT)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
opStack := make([]rune, 0) // Operator stack
|
|
|
|
outQueue := make([]rune, 0) // Output queue
|
|
|
|
|
|
|
|
// Actual algorithm
|
|
|
|
for i := 0; i < len(re_postfix); i++ {
|
|
|
|
/* Two cases:
|
|
|
|
1. Current character is alphanumeric - send to output queue
|
|
|
|
2. Current character is operator - do the following:
|
|
|
|
a. If current character has greater priority than top of opStack, push to opStack.
|
|
|
|
b. If not, keep popping from opStack (and appending to outQueue) until:
|
|
|
|
i. opStack is empty, OR
|
|
|
|
ii. current character has greater priority than top of opStack
|
|
|
|
3. If current character is '(', push to opStack
|
|
|
|
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
|
|
|
|
*/
|
|
|
|
c := re_postfix[i]
|
|
|
|
if isAlphaNum(c) {
|
|
|
|
outQueue = append(outQueue, c)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
// Escape character - NOT IMPLEMENTED YET - DO NOT USE
|
|
|
|
// if c == '\\' { // Escape character - next character is treated as alphanum
|
|
|
|
// if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
|
|
|
|
// panic("ERROR: Backslash with no escape character.")
|
|
|
|
// }
|
|
|
|
// outQueue = append(outQueue, re_postfix[i+1])
|
|
|
|
// }
|
|
|
|
|
|
|
|
if isOperator(c) {
|
|
|
|
if len(opStack) == 0 {
|
|
|
|
opStack = append(opStack, c)
|
|
|
|
} else {
|
|
|
|
topStack, err := peek(opStack)
|
|
|
|
if err != nil {
|
|
|
|
panic("ERROR: Operator without operand.")
|
|
|
|
}
|
|
|
|
if priority(c) > priority(topStack) { // 2a
|
|
|
|
opStack = append(opStack, c)
|
|
|
|
} else {
|
|
|
|
for priority(c) <= priority(topStack) { // 2b
|
|
|
|
to_append := mustPop(&opStack)
|
|
|
|
outQueue = append(outQueue, to_append)
|
|
|
|
topStack, _ = peek(opStack)
|
|
|
|
}
|
|
|
|
opStack = append(opStack, c)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if c == '(' {
|
|
|
|
opStack = append(opStack, c)
|
|
|
|
}
|
|
|
|
if c == ')' {
|
|
|
|
// Keep popping from opStack until we encounter an opening parantheses. Panic if we reach the end of the stack.
|
|
|
|
for val, err := peek(opStack); val != '('; val, err = peek(opStack) {
|
|
|
|
if err != nil {
|
|
|
|
panic("ERROR: Imbalanced parantheses.")
|
|
|
|
}
|
|
|
|
to_append := mustPop(&opStack)
|
|
|
|
outQueue = append(outQueue, to_append)
|
|
|
|
}
|
|
|
|
_ = mustPop(&opStack) // Get rid of opening parantheses
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pop all remaining operators (and append to outQueue)
|
|
|
|
for len(opStack) > 0 {
|
|
|
|
to_append := mustPop(&opStack)
|
|
|
|
outQueue = append(outQueue, to_append)
|
|
|
|
}
|
|
|
|
|
|
|
|
return string(outQueue)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
|
|
|
|
// Returns start state.
|
|
|
|
func thompson(re string) *State {
|
|
|
|
nfa := make([]*State, 0) // Stack of states
|
|
|
|
for _, c := range re {
|
|
|
|
if isAlphaNum(c) {
|
|
|
|
state := State{}
|
|
|
|
state.transitions = make(map[int][]*State)
|
|
|
|
state.content = int(c)
|
|
|
|
state.output = make([]*State, 0)
|
|
|
|
state.output = append(state.output, &state)
|
|
|
|
state.isEmpty = false
|
|
|
|
nfa = append(nfa, &state)
|
|
|
|
}
|
|
|
|
// Must be an operator if it isn't alphanumeric
|
|
|
|
switch c {
|
|
|
|
case CONCAT:
|
|
|
|
s2 := mustPop(&nfa)
|
|
|
|
s1 := mustPop(&nfa)
|
|
|
|
s1 = concatenate(s1, s2)
|
|
|
|
nfa = append(nfa, s1)
|
|
|
|
case '*': // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
|
|
|
|
s1 := mustPop(&nfa)
|
|
|
|
stateToAdd := kleene(*s1)
|
|
|
|
nfa = append(nfa, stateToAdd)
|
|
|
|
case '+': // a+ is equivalent to aa*
|
|
|
|
s1 := mustPop(&nfa)
|
|
|
|
s2 := kleene(*s1)
|
|
|
|
s1 = concatenate(s1, s2)
|
|
|
|
nfa = append(nfa, s1)
|
|
|
|
case '?': // ab? is equivalent to a(b|)
|
|
|
|
s1 := mustPop(&nfa)
|
|
|
|
s2 := &State{}
|
|
|
|
s2.transitions = make(map[int][]*State)
|
|
|
|
s2.content = EPSILON
|
|
|
|
s2.output = append(s2.output, s2)
|
|
|
|
s2.isEmpty = true
|
|
|
|
s3 := alternate(s1, s2)
|
|
|
|
nfa = append(nfa, s3)
|
|
|
|
case '|':
|
|
|
|
s1 := mustPop(&nfa)
|
|
|
|
s2 := mustPop(&nfa)
|
|
|
|
s3 := alternate(s1, s2)
|
|
|
|
nfa = append(nfa, s3)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if len(nfa) != 1 {
|
|
|
|
panic("ERROR: Invalid Regex.")
|
|
|
|
}
|
|
|
|
|
|
|
|
verifyLastStates(nfa)
|
|
|
|
|
|
|
|
return nfa[0]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
func main() {
|
|
|
|
// Process:
|
|
|
|
// 1. Convert regex into postfix notation (Shunting-Yard algorithm)
|
|
|
|
// a. Add explicit concatenation operators to facilitate this
|
|
|
|
// 2. Build NFA from postfix representation (Thompson's algorithm)
|
|
|
|
// 3. Run the string against the NFA
|
|
|
|
if len(os.Args) < 3 {
|
|
|
|
fmt.Println("ERROR: Missing cmdline args")
|
|
|
|
os.Exit(22)
|
|
|
|
}
|
|
|
|
var re string
|
|
|
|
re = os.Args[1]
|
|
|
|
re_postfix := shuntingYard(re)
|
|
|
|
// fmt.Println(re_postfix)
|
|
|
|
startState := thompson(re_postfix)
|
|
|
|
matchIndices := findAllMatches(startState, os.Args[2])
|
|
|
|
inColor := false
|
|
|
|
if len(matchIndices) > 0 {
|
|
|
|
for i, c := range os.Args[2] {
|
|
|
|
for _, indices := range matchIndices {
|
|
|
|
if i >= indices.startIdx && i < indices.endIdx {
|
|
|
|
color.New(color.FgRed).Printf("%c", c)
|
|
|
|
inColor = true
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if inColor == false {
|
|
|
|
fmt.Printf("%c", c)
|
|
|
|
}
|
|
|
|
inColor = false
|
|
|
|
}
|
|
|
|
fmt.Printf("\n")
|
|
|
|
} else {
|
|
|
|
fmt.Println(os.Args[2])
|
|
|
|
}
|
|
|
|
}
|