package main // a matchIndex represents a match. It contains the start index and end index of the match type matchIndex struct { startIdx int endIdx int } // Returns true if the given matchIndex is an improper subset of any of the indices in the slice. // When we add an index to our slice, we want to make sure a larger match isn't already present. func overlaps(idx matchIndex, idxes []matchIndex) bool { for _, val := range idxes { if idx.startIdx >= val.startIdx && idx.endIdx <= val.endIdx { // A zero-length match doesn't overlap if it is located at the start or end // of the other match if !(idx.startIdx == idx.endIdx && (idx.startIdx == val.startIdx || idx.startIdx == val.endIdx)) { return true } } } return false } // takeZeroState takes the 0-state (if such a transition exists) for all states in the // given slice. It returns the resulting states. If any of the resulting states is a 0-state, // the second parameter is true. func takeZeroState(states []*State) (rtv []*State, isZero bool) { for _, state := range states { if len(state.transitions[EPSILON]) > 0 { rtv = append(rtv, state.transitions[EPSILON]...) } } for _, state := range rtv { if len(state.transitions[EPSILON]) > 0 { return rtv, true } } return rtv, false } // zeroMatchPossible returns true if a zero-length match is possible // from any of the given states. // It uses the same algorithm to find zero-states as the one inside the loop, // so I should probably put it in a function. func zeroMatchPossible(states ...*State) bool { zerostates, iszero := takeZeroState(states) tempstates := make([]*State, 0) tempstates = append(tempstates, states...) tempstates = append(tempstates, zerostates...) num_appended := 0 // number of unique states addded to tempstates for iszero == true { zerostates, iszero = takeZeroState(tempstates) tempstates, num_appended = unique_append(tempstates, zerostates...) if num_appended == 0 { // break if we haven't appended any more unique values break } } for _, state := range tempstates { if state.isEmpty && state.assert == NONE && state.isLast { return true } } return false } // findAllMatches tries to findAllMatches the regex represented by given start-state, with // the given string func findAllMatches(start *State, str string) (indices []matchIndex) { return findAllMatchesHelper(start, str, make([]matchIndex, 0), 0) } func findAllMatchesHelper(start *State, str string, indices []matchIndex, offset int) []matchIndex { // Base case - exit if offset exceeds string's length if offset > len(str) { return indices } // 'Base case' - if we are at the end of the string, check if we can add a zero-length match if offset == len(str) { // Get all zero-state matches. If we can get to a zero-state without matching anything, we // can add a zero-length match. This is all true only if the start state itself matches nothing. if start.isEmpty && start.assert == NONE { if zeroMatchPossible(start) { if !overlaps(matchIndex{offset, offset}, indices) { indices, _ = unique_append(indices, matchIndex{offset, offset}) } } } return indices } foundPath := false startIdx := offset endIdx := offset currentStates := make([]*State, 0) tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration i := offset // Index in string startingFrom := i // Store starting index // Increment until we hit a character matching the start state (assuming not 0-state) if start.isEmpty == false { for i < len(str) && !start.contentContains([]rune(str), i) { i++ } startIdx = i startingFrom = i i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character } currentStates = append(currentStates, start) // Hold a list of match indices for the current run. When we // can no longer find a match, the match with the largest range is // chosen as the match for the entire string. // This allows us to pick the longest possible match (which is how greedy matching works). tempIndices := make([]matchIndex, 0) // Main loop for i < len(str) { foundPath = false zeroStates := make([]*State, 0) // Keep taking zero-states, until there are no more left to take // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take. zeroStates, isZero := takeZeroState(currentStates) tempStates = append(tempStates, zeroStates...) num_appended := 0 for isZero == true { zeroStates, isZero = takeZeroState(tempStates) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates, _ = unique_append(currentStates, tempStates...) tempStates = nil // Take any transitions corresponding to current character numStatesMatched := 0 // The number of states which had at least 1 match for this round assertionFailed := false // Whether or not an assertion failed for this round for _, state := range currentStates { matches, numMatches := state.matchesFor([]rune(str), i) if numMatches > 0 { numStatesMatched++ tempStates = append(tempStates, matches...) foundPath = true } if numMatches < 0 { assertionFailed = true } if state.isLast { endIdx = i tempIndices, _ = unique_append(tempIndices, matchIndex{startIdx, endIdx}) } } if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed - bort if i == startingFrom { i++ } return findAllMatchesHelper(start, str, indices, i) } // Recursion - match with rest of string if we have nowhere to go. // First check if we can find a zero-length match if foundPath == false { if zeroMatchPossible(currentStates...) { tempIndices, _ = unique_append(tempIndices, matchIndex{startIdx, startIdx}) } // If we haven't moved in the string, increment the counter by 1 // to ensure we don't keep trying the same string over and over. // if i == startingFrom { startIdx++ // i++ // } // Get the maximum index-range from the list if len(tempIndices) > 0 { indexToAdd := Reduce(tempIndices, func(i1 matchIndex, i2 matchIndex) matchIndex { r1 := i1.endIdx - i1.startIdx r2 := i2.endIdx - i2.startIdx if r1 >= r2 { return i1 } return i2 }) if !overlaps(indexToAdd, indices) { indices, _ = unique_append(indices, indexToAdd) } } return findAllMatchesHelper(start, str, indices, startIdx) } currentStates = make([]*State, len(tempStates)) copy(currentStates, tempStates) tempStates = nil i++ } // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position. // This is the exact same algorithm used inside the loop, so I should probably put it in a function. zeroStates, isZero := takeZeroState(currentStates) tempStates = append(tempStates, zeroStates...) num_appended := 0 // Number of unique states addded to tempStates for isZero == true { zeroStates, isZero = takeZeroState(tempStates) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates = append(currentStates, tempStates...) tempStates = nil for _, state := range currentStates { // Only add the match if the start index is in bounds if state.isLast && startIdx < len(str) { endIdx = i tempIndices, _ = unique_append(tempIndices, matchIndex{startIdx, endIdx}) } } // Get the maximum index-range from the list if len(tempIndices) > 0 { indexToAdd := Reduce(tempIndices, func(i1 matchIndex, i2 matchIndex) matchIndex { r1 := i1.endIdx - i1.startIdx r2 := i2.endIdx - i2.startIdx if r1 >= r2 { return i1 } return i2 }) if !overlaps(indexToAdd, indices) { indices, _ = unique_append(indices, indexToAdd) } } // Default - call on empty string to get any trailing zero-length matches return findAllMatchesHelper(start, str, indices, startIdx+1) }