package main import "slices" const EPSILON int = 0 type assertType int const ( NONE assertType = iota SOS EOS WBOUND NONWBOUND ) type State struct { content stateContents // Contents of current state isEmpty bool // If it is empty - Union operator and Kleene star states will be empty isLast bool // If it is the last state (acept state) output []*State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these. transitions map[int][]*State // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa) isKleene bool // Identifies whether current node is a 0-state representing Kleene star assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states } // Returns true if the contents of 's' contain the value at the given index of the given string func (s State) contentContains(str []rune, idx int) bool { if s.assert == SOS { return idx == 0 } if s.assert == EOS { return idx == len(str) } if s.assert == WBOUND { if s.assert == WBOUND { return isWordBoundary(str, idx) } if s.assert == NONWBOUND { return !isWordBoundary(str, idx) } } // Default - s.assert must be NONE return slices.Contains(s.content, int(str[idx])) } // Returns the matches for the character at the given index of the given string. // Also returns the number of matches. Returns -1 if an assertion failed. func (s State) matchesFor(str []rune, idx int) ([]*State, int) { // Assertions can be viewed as 'checks'. If the check fails, we return // an empty array and 0. // If it passes, we treat it like any other state, and return all the transitions. if s.assert == SOS && idx != 0 { return make([]*State, 0), -1 } if s.assert == EOS && idx != len(str) { return make([]*State, 0), -1 } if s.assert == WBOUND && !isWordBoundary(str, idx) { return make([]*State, 0), -1 } if s.assert == NONWBOUND && isWordBoundary(str, idx) { return make([]*State, 0), -1 } return s.transitions[int(str[idx])], len(s.transitions[int(str[idx])]) } type NFA struct { start State outputs []State } // verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates func verifyLastStatesHelper(state *State, visited map[*State]bool) { if len(state.transitions) == 0 { state.isLast = true return } // if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a* if len(state.transitions) == 1 { // Eg. a* var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one for _, c := range state.content { if len(state.transitions[c]) != 1 || state.transitions[c][0] != state { moreThanOneTrans = true } } state.isLast = !moreThanOneTrans } if state.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state transitionDests := make([]*State, 0) for _, v := range state.transitions { transitionDests = append(transitionDests, v...) } if allEqual(transitionDests...) { state.isLast = true return } } if visited[state] == true { return } visited[state] = true for _, states := range state.transitions { for i := range states { if states[i] != state { verifyLastStatesHelper(states[i], visited) } } } } // verifyLastStates enables the 'isLast' flag for the leaf nodes (last states) func verifyLastStates(start []*State) { verifyLastStatesHelper(start[0], make(map[*State]bool)) } func concatenate(s1 *State, s2 *State) *State { for i := range s1.output { for _, c := range s2.content { // Create transitions for every element in s2's content to s2' s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], s2) } } s1.output = s2.output return s1 } func kleene(s1 State) *State { toReturn := &State{} toReturn.transitions = make(map[int][]*State) toReturn.content = newContents(EPSILON) toReturn.isEmpty = true toReturn.isKleene = true toReturn.output = append(toReturn.output, toReturn) for i := range s1.output { for _, c := range toReturn.content { s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], toReturn) } } for _, c := range s1.content { toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], &s1) } return toReturn } func alternate(s1 *State, s2 *State) *State { toReturn := &State{} toReturn.transitions = make(map[int][]*State) toReturn.output = append(toReturn.output, s1.output...) toReturn.output = append(toReturn.output, s2.output...) // Unique append is used here (and elsewhere) to ensure that, // for any given transition, a state can only be mentioned once. // For example, given the transition 'a', the state 's1' can only be mentioned once. // This would lead to multiple instances of the same set of match indices, since both // 's1' states would be considered to match. for _, c := range s1.content { toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s1) } for _, c := range s2.content { toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s2) } toReturn.content = newContents(EPSILON) toReturn.isEmpty = true return toReturn }