package main import "sort" // a MatchIndex represents a match/group. It contains the start index and end index of the match type MatchIndex struct { startIdx int endIdx int } // A Match represents multiple matchIndices. Specifically, it maps an integer (representing the capturing group) // to the matchIndex of that group. // Group 0 corresponds to the entire match. type Match map[int]MatchIndex // takeZeroState takes the 0-state (if such a transition exists) for all states in the // given slice. It returns the resulting states. If any of the resulting states is a 0-state, // the second parameter is true. func takeZeroState(states []*State) (rtv []*State, isZero bool) { for _, state := range states { if len(state.transitions[EPSILON]) > 0 { rtv = append(rtv, state.transitions[EPSILON]...) } } for _, state := range rtv { if len(state.transitions[EPSILON]) > 0 { return rtv, true } } return rtv, false } // zeroMatchPossible returns true if a zero-length match is possible // from any of the given states. // It uses the same algorithm to find zero-states as the one inside the loop, // so I should probably put it in a function. func zeroMatchPossible(states ...*State) bool { zerostates, iszero := takeZeroState(states) tempstates := make([]*State, 0, len(zerostates)+len(states)) tempstates = append(tempstates, states...) tempstates = append(tempstates, zerostates...) num_appended := 0 // number of unique states addded to tempstates for iszero == true { zerostates, iszero = takeZeroState(tempstates) tempstates, num_appended = unique_append(tempstates, zerostates...) if num_appended == 0 { // break if we haven't appended any more unique values break } } for _, state := range tempstates { if state.isEmpty && state.assert == NONE && state.isLast { return true } } return false } // Prunes the slice by removing overlapping indices. func pruneIndices(indices []MatchIndex) []MatchIndex { // First, sort the slice by the start indices sort.Slice(indices, func(i, j int) bool { return indices[i].startIdx < indices[j].startIdx }) toRet := make([]MatchIndex, 0, len(indices)) current := indices[0] for _, idx := range indices[1:] { // idx doesn't overlap with current (starts after current ends), so add current to result // and update the current. if idx.startIdx >= current.endIdx { toRet = append(toRet, current) current = idx } else if idx.endIdx > current.endIdx { // idx overlaps, but it is longer, so update current current = idx } } // Add last state toRet = append(toRet, current) return toRet } // findAllMatches tries to find all matches of the regex represented by given start-state, with // the given string func findAllMatches(start *State, str []rune) []MatchIndex { idx := 0 var matchFound bool var matchIdx MatchIndex indices := new_uniq_arr[MatchIndex]() for idx <= len(str) { matchFound, matchIdx, idx = findAllMatchesHelper(start, str, idx) if matchFound { indices.add(matchIdx) } } toReturn := indices.values() if len(toReturn) > 0 { return pruneIndices(toReturn) } return toReturn } // Helper for findAllMatches. Returns whether it found a match, the // first matchIndex it finds, and how far it got into the string ie. where // the next search should start from. // // Might return duplicates or overlapping indices, so care must be taken to prune the resulting array. func findAllMatchesHelper(start *State, str []rune, offset int) (bool, MatchIndex, int) { // Base case - exit if offset exceeds string's length if offset > len(str) { // The first value here shouldn't be used, because we should exit when the second return value is > than len(str) return false, MatchIndex{}, offset } // 'Base case' - if we are at the end of the string, check if we can add a zero-length match if offset == len(str) { // Get all zero-state matches. If we can get to a zero-state without matching anything, we // can add a zero-length match. This is all true only if the start state itself matches nothing. if start.isEmpty && start.assert == NONE { if zeroMatchPossible(start) { return true, MatchIndex{offset, offset}, offset + 1 } } return false, MatchIndex{}, offset + 1 } foundPath := false startIdx := offset endIdx := offset currentStates := make([]*State, 0) tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration i := offset // Index in string startingFrom := i // Store starting index // Increment until we hit a character matching the start state (assuming not 0-state) if start.isEmpty == false { for i < len(str) && !start.contentContains(str, i) { i++ } startIdx = i startingFrom = i i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character } currentStates = append(currentStates, start) // Hold a list of match indices for the current run. When we // can no longer find a match, the match with the largest range is // chosen as the match for the entire string. // This allows us to pick the longest possible match (which is how greedy matching works). tempIndices := make([]MatchIndex, 0) // Main loop for i < len(str) { foundPath = false zeroStates := make([]*State, 0) // Keep taking zero-states, until there are no more left to take // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take. zeroStates, isZero := takeZeroState(currentStates) tempStates = append(tempStates, zeroStates...) num_appended := 0 for isZero == true { zeroStates, isZero = takeZeroState(tempStates) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates, _ = unique_append(currentStates, tempStates...) tempStates = nil // Take any transitions corresponding to current character numStatesMatched := 0 // The number of states which had at least 1 match for this round assertionFailed := false // Whether or not an assertion failed for this round for _, state := range currentStates { matches, numMatches := state.matchesFor(str, i) if numMatches > 0 { numStatesMatched++ tempStates = append(tempStates, matches...) foundPath = true } if numMatches < 0 { assertionFailed = true } if state.isLast { endIdx = i tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, endIdx}) } } if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed - abort if i == startingFrom { i++ } return false, MatchIndex{}, i } // Check if we can find a zero-length match if foundPath == false { if zeroMatchPossible(currentStates...) { tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, startIdx}) } // If we haven't moved in the string, increment the counter by 1 // to ensure we don't keep trying the same string over and over. // if i == startingFrom { startIdx++ // i++ // } // Get the maximum index-range from the list if len(tempIndices) > 0 { indexToAdd := Reduce(tempIndices, func(i1 MatchIndex, i2 MatchIndex) MatchIndex { r1 := i1.endIdx - i1.startIdx r2 := i2.endIdx - i2.startIdx if r1 >= r2 { return i1 } return i2 }) if indexToAdd.startIdx == indexToAdd.endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over. return true, indexToAdd, indexToAdd.endIdx + 1 } else { return true, indexToAdd, indexToAdd.endIdx } } return false, MatchIndex{}, startIdx } currentStates = make([]*State, len(tempStates)) copy(currentStates, tempStates) tempStates = nil i++ } // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position. // This is the exact same algorithm used inside the loop, so I should probably put it in a function. zeroStates, isZero := takeZeroState(currentStates) tempStates = append(tempStates, zeroStates...) num_appended := 0 // Number of unique states addded to tempStates for isZero == true { zeroStates, isZero = takeZeroState(tempStates) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates = append(currentStates, tempStates...) tempStates = nil for _, state := range currentStates { // Only add the match if the start index is in bounds. If the state has an assertion, // make sure the assertion checks out. if state.isLast && startIdx < len(str) { if state.assert == NONE || state.checkAssertion(str, len(str)) { endIdx = i tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, endIdx}) } } } // Get the maximum index-range from the list if len(tempIndices) > 0 { indexToAdd := Reduce(tempIndices, func(i1 MatchIndex, i2 MatchIndex) MatchIndex { r1 := i1.endIdx - i1.startIdx r2 := i2.endIdx - i2.startIdx if r1 >= r2 { return i1 } return i2 }) if indexToAdd.endIdx == indexToAdd.startIdx { // Same statement occurs above, see reasoning there return true, indexToAdd, indexToAdd.endIdx + 1 } else { return true, indexToAdd, indexToAdd.endIdx } } if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over. startIdx++ } return false, MatchIndex{}, startIdx }