package main const EPSILON int = 0 type State struct { content int // Contents of current state isEmpty bool // If it is empty - Union operator and Kleene star states will be empty isLast bool // If it is the last state (acept state) output []*State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these. transitions map[int][]*State // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa) isKleene bool // Identifies whether current node is a 0-state representing Kleene star } type NFA struct { start State outputs []State } // verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates func verifyLastStatesHelper(state *State, visited map[*State]bool) { if len(state.transitions) == 0 { state.isLast = true return } if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a* state.isLast = true return } if len(state.transitions) == 1 && state.isKleene { // A State representing a Kleene Star has a transition going out, which loops back to it. If that is the only transition (and it contains only one state), then it must be a last-state for _, v := range state.transitions { // Should only loop once if len(v) == 1 { state.isLast = true return } } } if visited[state] == true { return } visited[state] = true for _, states := range state.transitions { for i := range states { if states[i] != state { verifyLastStatesHelper(states[i], visited) } } } } // verifyLastStates enables the 'isLast' flag for the leaf nodes (last states) func verifyLastStates(start []*State) { verifyLastStatesHelper(start[0], make(map[*State]bool)) } func concatenate(s1 *State, s2 *State) *State { for i := range s1.output { s1.output[i].transitions[s2.content] = unique_append(s1.output[i].transitions[s2.content], s2) } s1.output = s2.output return s1 } func kleene(s1 State) *State { toReturn := &State{} toReturn.transitions = make(map[int][]*State) toReturn.content = EPSILON toReturn.isEmpty = true toReturn.isKleene = true toReturn.output = append(toReturn.output, toReturn) for i := range s1.output { s1.output[i].transitions[toReturn.content] = unique_append(s1.output[i].transitions[toReturn.content], toReturn) } toReturn.transitions[s1.content] = unique_append(toReturn.transitions[s1.content], &s1) return toReturn } func alternate(s1 *State, s2 *State) *State { toReturn := &State{} toReturn.transitions = make(map[int][]*State) toReturn.output = append(toReturn.output, s1.output...) toReturn.output = append(toReturn.output, s2.output...) // Unique append is used here (and elsewhere) to ensure that, // for any given transition, a state can only be mentioned once. // For example, given the transition 'a', the state 's1' can only be mentioned once. // This would lead to multiple instances of the same set of match indices, since both // 's1' states would be considered to match. toReturn.transitions[s1.content] = unique_append(toReturn.transitions[s1.content], s1) toReturn.transitions[s2.content] = unique_append(toReturn.transitions[s2.content], s2) toReturn.content = EPSILON toReturn.isEmpty = true return toReturn }