package main import ( "fmt" "sort" ) // a Match stores a slice of all the capturing groups in a match. type Match []Group // a Group represents a group. It contains the start index and end index of the match type Group struct { startIdx int endIdx int } func newMatch(size int) Match { toRet := make([]Group, size) for i := range toRet { toRet[i].startIdx = -1 toRet[i].endIdx = -1 } return toRet } // Returns the number of valid groups in the match func (m Match) numValidGroups() int { numValid := 0 for _, g := range m { if g.startIdx >= 0 && g.endIdx >= 0 { numValid++ } } return numValid } // Returns a string containing the indices of all (valid) groups in the match func (m Match) toString() string { var toRet string for i, g := range m { if g.isValid() { toRet += fmt.Sprintf("Group %d\n", i) toRet += g.toString() toRet += "\n" } } return toRet } // Converts the Group into a string representation: func (idx Group) toString() string { return fmt.Sprintf("%d\t%d", idx.startIdx, idx.endIdx) } // Returns whether a group contains valid indices func (g Group) isValid() bool { return g.startIdx >= 0 && g.endIdx >= 0 } // takeZeroState takes the 0-state (if such a transition exists) for all states in the // given slice. It returns the resulting states. If any of the resulting states is a 0-state, // the second ret val is true. // The third ret val is a list of all the group numbers of all the opening parentheses we crossed, // and the fourth is a list of all the closing parentheses we passed func takeZeroState(states []*State, numGroups int, idx int) (rtv []*State, isZero bool) { for _, state := range states { if len(state.transitions[EPSILON]) > 0 { for _, s := range state.transitions[EPSILON] { if s.threadGroups == nil { s.threadGroups = newMatch(numGroups + 1) } copy(s.threadGroups, state.threadGroups) if s.groupBegin { s.threadGroups[s.groupNum].startIdx = idx // openParenGroups = append(openParenGroups, s.groupNum) } if s.groupEnd { s.threadGroups[s.groupNum].endIdx = idx // closeParenGroups = append(closeParenGroups, s.groupNum) } } rtv = append(rtv, state.transitions[EPSILON]...) } } for _, state := range rtv { if len(state.transitions[EPSILON]) > 0 { return rtv, true } } return rtv, false } // zeroMatchPossible returns true if a zero-length match is possible // from any of the given states, given the string and our position in it. // It uses the same algorithm to find zero-states as the one inside the loop, // so I should probably put it in a function. // It also returns all the capturing groups that both begin and end at the current index. // This is because, by definition, zero-states don't move forward in the string. func zeroMatchPossible(str []rune, idx int, numGroups int, states ...*State) (bool, []int, []int) { allOpenParenGroups := make([]int, 0) allCloseParenGroups := make([]int, 0) zeroStates, isZero := takeZeroState(states, numGroups, idx) tempstates := make([]*State, 0, len(zeroStates)+len(states)) tempstates = append(tempstates, states...) tempstates = append(tempstates, zeroStates...) num_appended := 0 // number of unique states addded to tempstates for isZero == true { zeroStates, isZero = takeZeroState(tempstates, numGroups, idx) tempstates, num_appended = unique_append(tempstates, zeroStates...) if num_appended == 0 { // break if we haven't appended any more unique values break } } for _, state := range tempstates { if state.isEmpty && (state.assert == NONE || state.checkAssertion(str, idx)) && state.isLast { return true, allOpenParenGroups, allCloseParenGroups } } return false, allOpenParenGroups, allCloseParenGroups } // Prunes the slice by removing overlapping indices. func pruneIndices(indices []Match) []Match { // First, sort the slice by the start indices sort.Slice(indices, func(i, j int) bool { return indices[i][0].startIdx < indices[j][0].startIdx }) toRet := make([]Match, 0, len(indices)) current := indices[0] for _, idx := range indices[1:] { // idx doesn't overlap with current (starts after current ends), so add current to result // and update the current. if idx[0].startIdx >= current[0].endIdx { toRet = append(toRet, current) current = idx } else if idx[0].endIdx > current[0].endIdx { // idx overlaps, but it is longer, so update current current = idx } } // Add last state toRet = append(toRet, current) return toRet } // findAllMatches tries to find all matches of the regex represented by given start-state, with // the given string func findAllMatches(start *State, str []rune, numGroups int) []Match { idx := 0 var matchFound bool var matchIdx Match indices := make([]Match, 0) for idx <= len(str) { matchFound, matchIdx, idx = findAllMatchesHelper(start, str, idx, numGroups) if matchFound { indices = append(indices, matchIdx) } } if len(indices) > 0 { return pruneIndices(indices) } return indices } // Helper for findAllMatches. Returns whether it found a match, the // first Match it finds, and how far it got into the string ie. where // the next search should start from. // // Might return duplicates or overlapping indices, so care must be taken to prune the resulting array. func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (bool, Match, int) { // Base case - exit if offset exceeds string's length if offset > len(str) { // The second value here shouldn't be used, because we should exit when the third return value is > than len(str) return false, []Group{}, offset } // 'Base case' - if we are at the end of the string, check if we can add a zero-length match if offset == len(str) { // Get all zero-state matches. If we can get to a zero-state without matching anything, we // can add a zero-length match. This is all true only if the start state itself matches nothing. if start.isEmpty { to_return := newMatch(numGroups + 1) if start.groupBegin { to_return[start.groupNum].startIdx = offset } if ok, openGrps, closeGrps := zeroMatchPossible(str, offset, numGroups, start); ok { for _, gIdx := range openGrps { to_return[gIdx].startIdx = offset } for _, gIdx := range closeGrps { to_return[gIdx].endIdx = offset } to_return[0] = Group{offset, offset} return true, to_return, offset + 1 } } return false, []Group{}, offset + 1 } // Hold a list of match indices for the current run. When we // can no longer find a match, the match with the largest range is // chosen as the match for the entire string. // This allows us to pick the longest possible match (which is how greedy matching works). // COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE tempIndices := newMatch(numGroups + 1) foundPath := false startIdx := offset endIdx := offset currentStates := make([]*State, 0) tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration i := offset // Index in string startingFrom := i // Store starting index // If the first state is an assertion, makes sure the assertion // is true before we do _anything_ else. if start.assert != NONE { if start.checkAssertion(str, offset) == false { i++ return false, []Group{}, i } } // Increment until we hit a character matching the start state (assuming not 0-state) if start.isEmpty == false { for i < len(str) && !start.contentContains(str, i) { i++ } startIdx = i startingFrom = i i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character } start.threadGroups = newMatch(numGroups + 1) // Check if the start state begins a group - if so, add the start index to our list if start.groupBegin { start.threadGroups[start.groupNum].startIdx = i // tempIndices[start.groupNum].startIdx = i } currentStates = append(currentStates, start) // Main loop for i < len(str) { foundPath = false zeroStates := make([]*State, 0) // Keep taking zero-states, until there are no more left to take // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take. zeroStates, isZero := takeZeroState(currentStates, numGroups, i) tempStates = append(tempStates, zeroStates...) num_appended := 0 for isZero == true { zeroStates, isZero = takeZeroState(tempStates, numGroups, i) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates, _ = unique_append(currentStates, tempStates...) tempStates = nil // Take any transitions corresponding to current character numStatesMatched := 0 // The number of states which had at least 1 match for this round assertionFailed := false // Whether or not an assertion failed for this round lastStateInList := false // Whether or not a last state was in our list of states var lastStatePtr *State = nil // Pointer to the last-state, if it was found lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states for _, state := range currentStates { matches, numMatches := state.matchesFor(str, i) if numMatches > 0 { numStatesMatched++ tempStates = append(tempStates, matches...) foundPath = true for _, m := range matches { if m.threadGroups == nil { m.threadGroups = newMatch(numGroups + 1) } copy(m.threadGroups, state.threadGroups) } } if numMatches < 0 { assertionFailed = true } if state.isLast { if state.isLookaround() { lastLookaroundInList = true } lastStateInList = true lastStatePtr = state } } if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed // If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_ // state. The explanation below is my attempt to explain this behavior. // If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails. // // One of the states in our list was a last state and a lookaround. In this case, we // don't abort upon failure of the assertion, because we have found // another path to a final state. // Even if the last state _was_ an assertion, we can use the previously // saved indices to find a match. if lastLookaroundInList { break } else { if i == startingFrom { i++ } return false, []Group{}, i } } // Check if we can find a state in our list that is: // a. A last-state // b. Empty // c. Doesn't assert anything for _, s := range currentStates { if s.isLast && s.isEmpty && s.assert == NONE { lastStatePtr = s lastStateInList = true } } if lastStateInList { // A last-state was in the list of states. add the matchIndex to our MatchIndex list for j := 1; j < numGroups+1; j++ { tempIndices[j] = lastStatePtr.threadGroups[j] } endIdx = i tempIndices[0] = Group{startIdx, endIdx} } // Check if we can find a zero-length match if foundPath == false { if ok, _, _ := zeroMatchPossible(str, i, numGroups, currentStates...); ok { if tempIndices[0].isValid() == false { tempIndices[0] = Group{startIdx, startIdx} } } // If we haven't moved in the string, increment the counter by 1 // to ensure we don't keep trying the same string over and over. // if i == startingFrom { startIdx++ // i++ // } if tempIndices.numValidGroups() > 0 && tempIndices[0].isValid() { if tempIndices[0].startIdx == tempIndices[0].endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over. return true, tempIndices, tempIndices[0].endIdx + 1 } else { return true, tempIndices, tempIndices[0].endIdx } } return false, []Group{}, startIdx } currentStates = make([]*State, len(tempStates)) copy(currentStates, tempStates) tempStates = nil i++ } // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position. // This is the exact same algorithm used inside the loop, so I should probably put it in a function. zeroStates, isZero := takeZeroState(currentStates, numGroups, i) tempStates = append(tempStates, zeroStates...) num_appended := 0 // Number of unique states addded to tempStates for isZero == true { zeroStates, isZero = takeZeroState(tempStates, numGroups, i) tempStates, num_appended = unique_append(tempStates, zeroStates...) if num_appended == 0 { // Break if we haven't appended any more unique values break } } currentStates = append(currentStates, tempStates...) tempStates = nil for _, state := range currentStates { // Only add the match if the start index is in bounds. If the state has an assertion, // make sure the assertion checks out. if state.isLast && startIdx < len(str) { if state.assert == NONE || state.checkAssertion(str, i) { for j := 1; j < numGroups+1; j++ { tempIndices[j] = state.threadGroups[j] } endIdx = i tempIndices[0] = Group{startIdx, endIdx} } } } if tempIndices.numValidGroups() > 0 { if tempIndices[0].startIdx == tempIndices[0].endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over. return true, tempIndices, tempIndices[0].endIdx + 1 } else { return true, tempIndices, tempIndices[0].endIdx } } if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over. startIdx++ } return false, []Group{}, startIdx }