You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
10 KiB
Go
296 lines
10 KiB
Go
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
)
|
|
|
|
// a MatchIndex represents a match/group. It contains the start index and end index of the match
|
|
type MatchIndex struct {
|
|
startIdx int
|
|
endIdx int
|
|
}
|
|
|
|
// Converts the MatchIndex into a string representation:
|
|
func (idx MatchIndex) toString() string {
|
|
return fmt.Sprintf("%d\t%d", idx.startIdx, idx.endIdx)
|
|
}
|
|
|
|
// takeZeroState takes the 0-state (if such a transition exists) for all states in the
|
|
// given slice. It returns the resulting states. If any of the resulting states is a 0-state,
|
|
// the second parameter is true.
|
|
func takeZeroState(states []*State) (rtv []*State, isZero bool) {
|
|
for _, state := range states {
|
|
if len(state.transitions[EPSILON]) > 0 {
|
|
rtv = append(rtv, state.transitions[EPSILON]...)
|
|
}
|
|
}
|
|
for _, state := range rtv {
|
|
if len(state.transitions[EPSILON]) > 0 {
|
|
return rtv, true
|
|
}
|
|
}
|
|
return rtv, false
|
|
}
|
|
|
|
// zeroMatchPossible returns true if a zero-length match is possible
|
|
// from any of the given states, given the string and our position in it.
|
|
// It uses the same algorithm to find zero-states as the one inside the loop,
|
|
// so I should probably put it in a function.
|
|
func zeroMatchPossible(str []rune, idx int, states ...*State) bool {
|
|
zerostates, iszero := takeZeroState(states)
|
|
tempstates := make([]*State, 0, len(zerostates)+len(states))
|
|
tempstates = append(tempstates, states...)
|
|
tempstates = append(tempstates, zerostates...)
|
|
num_appended := 0 // number of unique states addded to tempstates
|
|
for iszero == true {
|
|
zerostates, iszero = takeZeroState(tempstates)
|
|
tempstates, num_appended = unique_append(tempstates, zerostates...)
|
|
if num_appended == 0 { // break if we haven't appended any more unique values
|
|
break
|
|
}
|
|
}
|
|
for _, state := range tempstates {
|
|
if state.isEmpty && (state.assert == NONE || state.checkAssertion(str, idx)) && state.isLast {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Prunes the slice by removing overlapping indices.
|
|
func pruneIndices(indices []MatchIndex) []MatchIndex {
|
|
// First, sort the slice by the start indices
|
|
sort.Slice(indices, func(i, j int) bool {
|
|
return indices[i].startIdx < indices[j].startIdx
|
|
})
|
|
toRet := make([]MatchIndex, 0, len(indices))
|
|
current := indices[0]
|
|
for _, idx := range indices[1:] {
|
|
// idx doesn't overlap with current (starts after current ends), so add current to result
|
|
// and update the current.
|
|
if idx.startIdx >= current.endIdx {
|
|
toRet = append(toRet, current)
|
|
current = idx
|
|
} else if idx.endIdx > current.endIdx {
|
|
// idx overlaps, but it is longer, so update current
|
|
current = idx
|
|
}
|
|
}
|
|
// Add last state
|
|
toRet = append(toRet, current)
|
|
return toRet
|
|
}
|
|
|
|
// findAllMatches tries to find all matches of the regex represented by given start-state, with
|
|
// the given string
|
|
func findAllMatches(start *State, str []rune) []MatchIndex {
|
|
idx := 0
|
|
var matchFound bool
|
|
var matchIdx MatchIndex
|
|
indices := new_uniq_arr[MatchIndex]()
|
|
for idx <= len(str) {
|
|
matchFound, matchIdx, idx = findAllMatchesHelper(start, str, idx)
|
|
if matchFound {
|
|
indices.add(matchIdx)
|
|
}
|
|
}
|
|
toReturn := indices.values()
|
|
if len(toReturn) > 0 {
|
|
return pruneIndices(toReturn)
|
|
}
|
|
return toReturn
|
|
}
|
|
|
|
// Helper for findAllMatches. Returns whether it found a match, the
|
|
// first matchIndex it finds, and how far it got into the string ie. where
|
|
// the next search should start from.
|
|
//
|
|
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
|
|
func findAllMatchesHelper(start *State, str []rune, offset int) (bool, MatchIndex, int) {
|
|
// Base case - exit if offset exceeds string's length
|
|
if offset > len(str) {
|
|
// The first value here shouldn't be used, because we should exit when the second return value is > than len(str)
|
|
return false, MatchIndex{}, offset
|
|
}
|
|
// 'Base case' - if we are at the end of the string, check if we can add a zero-length match
|
|
if offset == len(str) {
|
|
// Get all zero-state matches. If we can get to a zero-state without matching anything, we
|
|
// can add a zero-length match. This is all true only if the start state itself matches nothing.
|
|
if start.isEmpty {
|
|
if zeroMatchPossible(str, offset, start) {
|
|
return true, MatchIndex{offset, offset}, offset + 1
|
|
}
|
|
}
|
|
return false, MatchIndex{}, offset + 1
|
|
}
|
|
|
|
foundPath := false
|
|
startIdx := offset
|
|
endIdx := offset
|
|
currentStates := make([]*State, 0)
|
|
tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration
|
|
i := offset // Index in string
|
|
startingFrom := i // Store starting index
|
|
|
|
// Increment until we hit a character matching the start state (assuming not 0-state)
|
|
if start.isEmpty == false {
|
|
for i < len(str) && !start.contentContains(str, i) {
|
|
i++
|
|
}
|
|
startIdx = i
|
|
startingFrom = i
|
|
i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
|
}
|
|
currentStates = append(currentStates, start)
|
|
|
|
// Hold a list of match indices for the current run. When we
|
|
// can no longer find a match, the match with the largest range is
|
|
// chosen as the match for the entire string.
|
|
// This allows us to pick the longest possible match (which is how greedy matching works).
|
|
tempIndices := make([]MatchIndex, 0)
|
|
// Main loop
|
|
for i < len(str) {
|
|
foundPath = false
|
|
|
|
zeroStates := make([]*State, 0)
|
|
// Keep taking zero-states, until there are no more left to take
|
|
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
|
zeroStates, isZero := takeZeroState(currentStates)
|
|
tempStates = append(tempStates, zeroStates...)
|
|
num_appended := 0
|
|
for isZero == true {
|
|
zeroStates, isZero = takeZeroState(tempStates)
|
|
tempStates, num_appended = unique_append(tempStates, zeroStates...)
|
|
if num_appended == 0 { // Break if we haven't appended any more unique values
|
|
break
|
|
}
|
|
}
|
|
|
|
currentStates, _ = unique_append(currentStates, tempStates...)
|
|
tempStates = nil
|
|
|
|
// Take any transitions corresponding to current character
|
|
numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
|
assertionFailed := false // Whether or not an assertion failed for this round
|
|
lastStateInList := false // Whether or not a last state was in our list of states
|
|
// lastStateLookaround := false // Whether or not a last state (that is also a lookaround) matched
|
|
for _, state := range currentStates {
|
|
matches, numMatches := state.matchesFor(str, i)
|
|
if numMatches > 0 {
|
|
numStatesMatched++
|
|
tempStates = append(tempStates, matches...)
|
|
foundPath = true
|
|
}
|
|
if numMatches < 0 {
|
|
assertionFailed = true
|
|
}
|
|
if state.isLast {
|
|
lastStateInList = true
|
|
}
|
|
}
|
|
|
|
if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
|
// One of the states in our list was a last state. In this case, we
|
|
// don't abort upon the failure of an assertion, because we have found
|
|
// another path to a final state.
|
|
// Even if the last state _was_ an assertion, we can use the previously
|
|
// saved indices to find a match.
|
|
if lastStateInList {
|
|
break
|
|
} else {
|
|
if i == startingFrom {
|
|
i++
|
|
}
|
|
return false, MatchIndex{}, i
|
|
}
|
|
}
|
|
if lastStateInList { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
|
endIdx = i
|
|
tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, endIdx})
|
|
}
|
|
|
|
// Check if we can find a zero-length match
|
|
if foundPath == false {
|
|
if zeroMatchPossible(str, i, currentStates...) {
|
|
tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, startIdx})
|
|
}
|
|
// If we haven't moved in the string, increment the counter by 1
|
|
// to ensure we don't keep trying the same string over and over.
|
|
// if i == startingFrom {
|
|
startIdx++
|
|
// i++
|
|
// }
|
|
// Get the maximum index-range from the list
|
|
if len(tempIndices) > 0 {
|
|
indexToAdd := Reduce(tempIndices, func(i1 MatchIndex, i2 MatchIndex) MatchIndex {
|
|
r1 := i1.endIdx - i1.startIdx
|
|
r2 := i2.endIdx - i2.startIdx
|
|
if r1 >= r2 {
|
|
return i1
|
|
}
|
|
return i2
|
|
})
|
|
if indexToAdd.startIdx == indexToAdd.endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
|
return true, indexToAdd, indexToAdd.endIdx + 1
|
|
} else {
|
|
return true, indexToAdd, indexToAdd.endIdx
|
|
}
|
|
}
|
|
return false, MatchIndex{}, startIdx
|
|
}
|
|
currentStates = make([]*State, len(tempStates))
|
|
copy(currentStates, tempStates)
|
|
tempStates = nil
|
|
|
|
i++
|
|
}
|
|
|
|
// End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
|
// This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
|
zeroStates, isZero := takeZeroState(currentStates)
|
|
tempStates = append(tempStates, zeroStates...)
|
|
num_appended := 0 // Number of unique states addded to tempStates
|
|
for isZero == true {
|
|
zeroStates, isZero = takeZeroState(tempStates)
|
|
tempStates, num_appended = unique_append(tempStates, zeroStates...)
|
|
if num_appended == 0 { // Break if we haven't appended any more unique values
|
|
break
|
|
}
|
|
}
|
|
|
|
currentStates = append(currentStates, tempStates...)
|
|
tempStates = nil
|
|
|
|
for _, state := range currentStates {
|
|
// Only add the match if the start index is in bounds. If the state has an assertion,
|
|
// make sure the assertion checks out.
|
|
if state.isLast && startIdx < len(str) {
|
|
if state.assert == NONE || state.checkAssertion(str, i) {
|
|
endIdx = i
|
|
tempIndices, _ = unique_append(tempIndices, MatchIndex{startIdx, endIdx})
|
|
}
|
|
}
|
|
}
|
|
// Get the maximum index-range from the list
|
|
if len(tempIndices) > 0 {
|
|
indexToAdd := Reduce(tempIndices, func(i1 MatchIndex, i2 MatchIndex) MatchIndex {
|
|
r1 := i1.endIdx - i1.startIdx
|
|
r2 := i2.endIdx - i2.startIdx
|
|
if r1 >= r2 {
|
|
return i1
|
|
}
|
|
return i2
|
|
})
|
|
if indexToAdd.endIdx == indexToAdd.startIdx { // Same statement occurs above, see reasoning there
|
|
return true, indexToAdd, indexToAdd.endIdx + 1
|
|
} else {
|
|
return true, indexToAdd, indexToAdd.endIdx
|
|
}
|
|
}
|
|
if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
|
startIdx++
|
|
}
|
|
return false, MatchIndex{}, startIdx
|
|
}
|