You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
803 lines
30 KiB
Go
803 lines
30 KiB
Go
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"slices"
|
|
"strconv"
|
|
"unicode"
|
|
)
|
|
|
|
// Holds a list of all characters that are _not_ matched by the dot metacharacter
|
|
var notDotChars []rune
|
|
|
|
// A Reg represents the result of compiling a regular expression. It contains
|
|
// the startState of the NFA representation of the regex, and the number of capturing
|
|
// groups in the regex.
|
|
type Reg struct {
|
|
start *State
|
|
numGroups int
|
|
}
|
|
|
|
const CONCAT rune = '~'
|
|
|
|
// Flags for shuntingYard - control its behavior
|
|
type ReFlag int
|
|
|
|
const (
|
|
RE_NO_FLAGS ReFlag = iota
|
|
RE_CASE_INSENSITIVE
|
|
RE_MULTILINE
|
|
)
|
|
|
|
func isOperator(c rune) bool {
|
|
if c == '+' || c == '?' || c == '*' || c == '|' || c == CONCAT {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
/* priority returns the priority of the given operator */
|
|
func priority(op rune) int {
|
|
precedence := []rune{'|', CONCAT, '+', '*', '?'}
|
|
return slices.Index(precedence, op)
|
|
}
|
|
|
|
/*
|
|
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
|
|
The primary benefit of this is getting rid of parentheses.
|
|
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
|
|
An error can be returned for a multitude of reasons - the reason is specified in the error string.
|
|
The function also takes in 0 or more flags, which control the behavior of the parser.
|
|
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
|
|
*/
|
|
func shuntingYard(re string, flags ...ReFlag) ([]postfixNode, error) {
|
|
// Check which flags are enabled
|
|
|
|
caseInsensitive := false
|
|
// In Multiline mode, the newline character is considered a
|
|
// 'dot' character ie. the dot metacharacter matches a newline as well.
|
|
if slices.Contains(flags, RE_MULTILINE) {
|
|
notDotChars = []rune{}
|
|
} else {
|
|
notDotChars = []rune{'\n'}
|
|
}
|
|
if slices.Contains(flags, RE_CASE_INSENSITIVE) {
|
|
caseInsensitive = true
|
|
}
|
|
|
|
re_postfix := make([]rune, 0)
|
|
// Convert the string to a slice of runes to allow iteration through it
|
|
re_runes_orig := []rune(re) // This is the rune slice before the first parsing loop (which detects and replaces numeric ranges)
|
|
re_runes := make([]rune, 0)
|
|
// Check for numeric range. If we are at the start of a numeric range,
|
|
// skip to end and construct the equivalent regex for the range.
|
|
// The reason this is outside the loop below, is that it actually modifies
|
|
// the given regex (we 'cut' the numeric range and 'paste' an equivalent regex).
|
|
// It also makes the overall parsing easier, since I don't have to worry about the numeric range
|
|
// anymore.
|
|
// Eventually, I might be able to add it into the main parsing loop, to reduce the time
|
|
// complexity.
|
|
// A numeric range has the syntax: <num1-num2>. Ir matches all numbers in this range.
|
|
//
|
|
// Also check for non-capturing groups. The LPAREN of a non-capturing group looks like this: '(?:'
|
|
// I take this out, and put in a special character - NONCAPLPAREN_CHAR.
|
|
for i := 0; i < len(re_runes_orig); i++ {
|
|
c := re_runes_orig[i]
|
|
if c == '<' && (i == 0 || (re_runes_orig[i-1] != '\\' && re_runes_orig[i-1] != '?')) {
|
|
i++ // Step over opening angle bracket
|
|
tmpStr := ""
|
|
hyphenFound := false
|
|
for i < len(re_runes_orig) && re_runes_orig[i] != '>' {
|
|
if !unicode.IsDigit(re_runes_orig[i]) {
|
|
if re_runes_orig[i] != '-' || (hyphenFound) {
|
|
return nil, fmt.Errorf("Invalid numeric range.")
|
|
}
|
|
}
|
|
if re_runes_orig[i] == '-' {
|
|
hyphenFound = true
|
|
}
|
|
tmpStr += string(re_runes_orig[i])
|
|
i++
|
|
}
|
|
// End of string reached and last character doesn't close the range
|
|
if i == len(re_runes_orig) && re_runes_orig[len(re_runes_orig)-1] != '>' {
|
|
return nil, fmt.Errorf("Numeric range not closed.")
|
|
}
|
|
if len(tmpStr) == 0 {
|
|
return nil, fmt.Errorf("Empty numeric range.")
|
|
}
|
|
// Closing bracket will be skipped when the loop variable increments
|
|
var rangeStart int
|
|
var rangeEnd int
|
|
fmt.Sscanf(tmpStr, "%d-%d", &rangeStart, &rangeEnd)
|
|
regex := range2regex(rangeStart, rangeEnd)
|
|
re_runes = append(re_runes, []rune(regex)...)
|
|
} else if c == '(' && i < len(re_runes_orig)-2 && re_runes_orig[i+1] == '?' && re_runes_orig[i+2] == ':' {
|
|
re_runes = append(re_runes, NONCAPLPAREN_CHAR)
|
|
i += 2
|
|
} else {
|
|
re_runes = append(re_runes, c)
|
|
}
|
|
}
|
|
|
|
/* Add concatenation operators.
|
|
Only add a concatenation operator between two characters if both the following conditions are met:
|
|
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
|
|
a. This makes sense, because these operators can't be _concatenated_ with anything else.
|
|
2. The second character isn't a 'closing operator' - one that applies to something before it
|
|
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
|
|
Caveats:
|
|
1. Don't mess with anything inside brackets - character class
|
|
2. Don't mess with anything inside braces - numeric repetition
|
|
3. Don't mess with any lookarounds.
|
|
*/
|
|
i := 0
|
|
for i < len(re_runes) {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
if re_runes[i] == '[' && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped. Inside this block, the only task is to expand character ranges into their constituent characters.
|
|
re_postfix[len(re_postfix)-1] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
|
|
toAppend := make([]rune, 0) // Holds all the runes in the current character class
|
|
if i < len(re_runes)-1 && re_runes[i+1] == '^' { // Inverting class - match everything NOT in brackets
|
|
re_postfix = append(re_postfix, '^')
|
|
i++ // Skip opening bracket and caret
|
|
}
|
|
if i < len(re_runes)-1 && re_runes[i+1] == ']' { // Nothing inside brackets - panic.
|
|
return nil, fmt.Errorf("Empty character class.")
|
|
}
|
|
for re_runes[i] != ']' || i == 0 || re_runes[i-1] == '\\' {
|
|
i++ // Skip all characters inside _unescaped_ brackets (we are _not_ at a closing bracket, or if we are, the previous character is a backslash)
|
|
// TODO: Check for escaped characters
|
|
|
|
// Check ahead for character range
|
|
if i < len(re_runes)-2 && re_runes[i+1] == '-' {
|
|
rangeStart := re_runes[i]
|
|
rangeEnd := re_runes[i+2]
|
|
if int(rangeEnd) < int(rangeStart) {
|
|
return nil, fmt.Errorf("Range is out of order.")
|
|
}
|
|
|
|
for i := rangeStart; i <= rangeEnd; i++ {
|
|
toAppend = append(toAppend, i)
|
|
}
|
|
|
|
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
|
|
continue
|
|
}
|
|
toAppend = append(toAppend, re_runes[i])
|
|
}
|
|
// Replace the last character (which should have been ']', with RBRACKET
|
|
toAppend[len(toAppend)-1] = RBRACKET
|
|
re_postfix = append(re_postfix, toAppend...)
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
|
|
i++ // Skip opening brace
|
|
for i < len(re_runes) && re_runes[i] != '}' {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
}
|
|
if i == len(re_runes) {
|
|
return nil, fmt.Errorf("Invalid numeric specifier.")
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
|
|
}
|
|
if i < len(re_runes)-3 && string(re_runes[i+1:i+4]) == "(?:" { // Non-capturing lparen
|
|
re_postfix = append(re_postfix, NONCAPLPAREN_CHAR)
|
|
i += 3
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '\\' { // Something is being escaped (I don't add the backslash to re_postfix, because it was already added earlier)
|
|
i++
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("Stray backslash in expression.")
|
|
}
|
|
if re_runes[i] == 'x' {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("Stray backslash in expression.")
|
|
}
|
|
if re_runes[i] == '{' {
|
|
re_postfix = append(re_postfix, re_runes[i:i+8]...)
|
|
i += 7
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("Stray backslash in expression.")
|
|
}
|
|
} else if isHex(re_runes[i]) {
|
|
re_postfix = append(re_postfix, re_runes[i:i+2]...)
|
|
i += 2
|
|
} else {
|
|
return nil, fmt.Errorf("Invalid hex value in expression.")
|
|
}
|
|
} else if isOctal(re_runes[i]) {
|
|
numDigits := 1
|
|
for i+numDigits < len(re_runes) && numDigits < 3 && isOctal(re_runes[i+numDigits]) { // Skip while we see an octal character (max of 3)
|
|
numDigits++
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i:i+numDigits]...)
|
|
i += (numDigits - 1) // I have to move back a step, so that I can add a concatenation operator if necessary, and so that the increment at the bottom of the loop works as intended
|
|
} else {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
}
|
|
}
|
|
if i < len(re_runes) && re_runes[i] == '(' && (i == 0 || re_runes[i-1] != '\\') && (i < len(re_runes)-2 && re_runes[i+1] == '?' && slices.Contains([]rune{'=', '!', '<'}, re_runes[i+2])) { // Unescaped open parentheses followed by question mark then '<', '!' or '=' => lokaround. Don't mess with it.
|
|
i++ // Step inside
|
|
if i == len(re_runes)-1 || (re_runes[i+1] != '=' && re_runes[i+1] != '!' && re_runes[i+1] != '<') {
|
|
return nil, fmt.Errorf("Invalid regex. Lookaround intended?")
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
numOpenParens := 1
|
|
for numOpenParens != 0 {
|
|
if i >= len(re_runes) {
|
|
return nil, fmt.Errorf("Unclosed lookaround.")
|
|
}
|
|
if re_runes[i] == '(' || re_runes[i] == NONCAPLPAREN_CHAR {
|
|
numOpenParens++
|
|
}
|
|
if re_runes[i] == ')' {
|
|
numOpenParens--
|
|
if numOpenParens == 0 {
|
|
break
|
|
}
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
}
|
|
continue
|
|
}
|
|
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != NONCAPLPAREN_CHAR && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
|
|
if i < len(re_runes)-1 {
|
|
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
|
|
re_postfix = append(re_postfix, CONCAT)
|
|
}
|
|
}
|
|
}
|
|
i++
|
|
}
|
|
|
|
opStack := make([]rune, 0) // Operator stack
|
|
outQueue := make([]postfixNode, 0) // Output queue
|
|
|
|
// Actual algorithm
|
|
numOpenParens := 0 // Number of open parentheses
|
|
for i := 0; i < len(re_postfix); i++ {
|
|
/* Two cases:
|
|
1. Current character is alphanumeric - send to output queue
|
|
2. Current character is operator - do the following:
|
|
a. If current character has greater priority than top of opStack, push to opStack.
|
|
b. If not, keep popping from opStack (and appending to outQueue) until:
|
|
i. opStack is empty, OR
|
|
ii. current character has greater priority than top of opStack
|
|
3. If current character is '(' or NONCAPLPAREN_CHAR, push to opStack
|
|
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
|
|
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
|
|
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
|
|
*/
|
|
c := re_postfix[i]
|
|
if isNormalChar(c) {
|
|
if caseInsensitive {
|
|
outQueue = append(outQueue, newPostfixNode(allCases(c)...))
|
|
} else {
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
continue
|
|
}
|
|
// Escape character
|
|
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
|
|
if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
|
|
return nil, fmt.Errorf("ERROR: Backslash with no escape character.")
|
|
}
|
|
i++
|
|
if re_postfix[i] == 'x' { // Hex value
|
|
i++
|
|
if re_postfix[i] == '{' && i < len(re_postfix)-6 { // Expanded hex code
|
|
var hexVal int
|
|
n, err := fmt.Sscanf(string(re_postfix[i:]), "{%x}", &hexVal)
|
|
if n < 1 || err != nil {
|
|
return nil, fmt.Errorf("Error parsing expanded hex code in expression.")
|
|
}
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(hexVal)))
|
|
i += 7
|
|
} else if i < len(re_postfix)-1 { // Two-digit hex code
|
|
hexVal, err := strconv.ParseInt(string([]rune{re_postfix[i], re_postfix[i+1]}), 16, 64) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Error parsing hex characters in expression.")
|
|
}
|
|
i++ // Loop increment will take care of going forward
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(hexVal)))
|
|
} else {
|
|
return nil, fmt.Errorf("Not enough hex characters found in expression.")
|
|
}
|
|
} else if isOctal(re_postfix[i]) { // Octal value
|
|
var octVal int64
|
|
var octValStr string
|
|
numDigitsParsed := 0
|
|
for (i+numDigitsParsed) < len(re_postfix) && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 {
|
|
octValStr += string(re_postfix[i+numDigitsParsed])
|
|
numDigitsParsed++
|
|
}
|
|
octVal, err := strconv.ParseInt(octValStr, 8, 32)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Error parsing octal value in expression.")
|
|
}
|
|
if octVal > 0777 {
|
|
return nil, fmt.Errorf("Invalid octal value in expression.")
|
|
}
|
|
i += numDigitsParsed - 1 // Shift forward by the number of digits that were parsed. Move back one character, because the loop increment will move us back to the next character automatically
|
|
outQueue = append(outQueue, newPostfixCharNode(rune(octVal)))
|
|
} else {
|
|
escapedNode, err := newEscapedNode(re_postfix[i], false)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Invalid escape character in expression.")
|
|
}
|
|
outQueue = append(outQueue, escapedNode)
|
|
}
|
|
continue // Escaped character will automatically be skipped when loop variable increments
|
|
}
|
|
|
|
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
|
|
outQueue = append(outQueue, newPostfixDotNode())
|
|
continue
|
|
}
|
|
if c == '^' { // Start-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
if c == '$' { // End-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
// Check if we're at the start of a lookaround
|
|
if c == '(' && i < len(re_postfix)-1 && re_postfix[i+1] == '?' {
|
|
i += 2 // Skip opening paren and question mark
|
|
regex := "" // Stores lookaround regex
|
|
numOpenParens := 1
|
|
for numOpenParens != 0 {
|
|
if i >= len(re_postfix) {
|
|
return nil, fmt.Errorf("Unclosed lookaround.")
|
|
}
|
|
if re_postfix[i] == '(' || re_postfix[i] == NONCAPLPAREN_CHAR {
|
|
numOpenParens++
|
|
}
|
|
if re_postfix[i] == ')' {
|
|
numOpenParens--
|
|
if numOpenParens == 0 {
|
|
break
|
|
}
|
|
}
|
|
regex += string(re_postfix[i])
|
|
i++
|
|
}
|
|
if len(regex) <= 1 { // Nothing in regex - panic
|
|
return nil, fmt.Errorf("Invalid lookaround. (too short?)")
|
|
}
|
|
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
|
|
// Now we should filter that out.
|
|
toAppend := postfixNode{nodetype: ASSERTION, startReps: 1, endReps: 1}
|
|
if regex[0] == '<' { // Lookbehind
|
|
toAppend.lookaroundDir = LOOKBEHIND
|
|
regex = regex[1:]
|
|
} else if regex[0] == '=' || regex[0] == '!' {
|
|
toAppend.lookaroundDir = LOOKAHEAD
|
|
} else {
|
|
return nil, fmt.Errorf("Invalid lookaround.")
|
|
}
|
|
// Positive or negative
|
|
if regex[0] == '=' { // Positive
|
|
toAppend.lookaroundSign = POSITIVE
|
|
toAppend.contents = []rune(regex[1:])
|
|
} else if regex[0] == '!' { // Negative
|
|
toAppend.lookaroundSign = NEGATIVE
|
|
toAppend.contents = []rune(regex[1:])
|
|
} else {
|
|
return nil, fmt.Errorf("Invalid lookaround.")
|
|
}
|
|
outQueue = append(outQueue, toAppend)
|
|
continue
|
|
}
|
|
if isOperator(c) {
|
|
if len(opStack) == 0 {
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
topStack, err := peek(opStack)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Operator without operand.")
|
|
}
|
|
if priority(c) > priority(topStack) { // 2a
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
for priority(c) <= priority(topStack) { // 2b
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
topStack, _ = peek(opStack)
|
|
}
|
|
opStack = append(opStack, c)
|
|
}
|
|
}
|
|
}
|
|
if c == LBRACKET { // Used for character classes
|
|
i++ // Step forward so we can look at the character class
|
|
var invertMatch bool
|
|
if re_postfix[i] == '^' {
|
|
invertMatch = true
|
|
i++
|
|
}
|
|
chars := make([]postfixNode, 0) // List of nodes - used only for character classes
|
|
for i < len(re_postfix) {
|
|
if re_postfix[i] == RBRACKET {
|
|
break
|
|
}
|
|
if re_postfix[i] == '\\' { // Backslash indicates a character to be escaped
|
|
if i == len(re_postfix)-1 {
|
|
return nil, fmt.Errorf("Stray backslash in character class.")
|
|
}
|
|
i++ // Step past backslash
|
|
|
|
if re_postfix[i] == 'x' { // Hex value
|
|
i++
|
|
if re_postfix[i] == '{' && i < len(re_postfix)-7 { // Expanded hex code
|
|
var hexVal int
|
|
n, err := fmt.Sscanf(string(re_postfix[i:]), "{%x}", &hexVal)
|
|
if n < 1 || err != nil {
|
|
return nil, fmt.Errorf("Error parsing expanded hex code in character class.")
|
|
}
|
|
chars = append(chars, newPostfixCharNode(rune(hexVal)))
|
|
i += 8
|
|
} else if i < len(re_postfix)-2 { // Two-digit hex code
|
|
hexVal, err := strconv.ParseInt(string([]rune{re_postfix[i], re_postfix[i+1]}), 16, 64) // Convert the two hex values into a rune slice, then to a string. Parse the string into an int with strconv.ParseInt()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Error parsing hex characters in character class.")
|
|
}
|
|
i += 2
|
|
chars = append(chars, newPostfixCharNode(rune(hexVal)))
|
|
} else {
|
|
return nil, fmt.Errorf("Not enough hex characters found in character class.")
|
|
}
|
|
} else if isOctal(re_postfix[i]) { // Octal value
|
|
var octVal int64
|
|
var octValStr string
|
|
numDigitsParsed := 0
|
|
for (i+numDigitsParsed) < len(re_postfix)-1 && isOctal(re_postfix[i+numDigitsParsed]) && numDigitsParsed <= 3 { // The '-1' exists, because even in the worst case (the character class extends till the end), the last character must be a closing bracket (and nothing else)
|
|
octValStr += string(re_postfix[i+numDigitsParsed])
|
|
numDigitsParsed++
|
|
}
|
|
octVal, err := strconv.ParseInt(octValStr, 8, 32)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Error parsing octal value in character class.")
|
|
}
|
|
if octVal > 0777 {
|
|
return nil, fmt.Errorf("Invalid octal value in character class.")
|
|
}
|
|
i += numDigitsParsed // Shift forward by the number of characters parsed
|
|
chars = append(chars, newPostfixCharNode(rune(octVal)))
|
|
} else {
|
|
escapedNode, err := newEscapedNode(re_postfix[i], true)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Invalid escape character in character class.")
|
|
}
|
|
chars = append(chars, escapedNode)
|
|
i++
|
|
}
|
|
} else {
|
|
chars = append(chars, newPostfixCharNode(re_postfix[i]))
|
|
i++
|
|
}
|
|
}
|
|
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
|
|
return nil, fmt.Errorf("Opening bracket without closing bracket.")
|
|
}
|
|
outQueue = append(outQueue, newCharClassNode(chars, invertMatch))
|
|
continue
|
|
}
|
|
if c == '{' {
|
|
i++ // Skip opening brace
|
|
// Three possibilities:
|
|
// 1. Single number - {5}
|
|
// 2. Range - {3,5}
|
|
// 3. Start with no end, {3,}
|
|
startRange := make([]rune, 0)
|
|
startRangeNum := 0
|
|
endRange := make([]rune, 0)
|
|
endRangeNum := 0
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
startRange = append(startRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if len(startRange) == 0 { // {} is not valid, neither is {,5}
|
|
return nil, fmt.Errorf("Invalid numeric specifier.")
|
|
}
|
|
if i == len(re_postfix) {
|
|
return nil, fmt.Errorf("Brace not closed.")
|
|
}
|
|
|
|
startRangeNum, err := strconv.Atoi(string(startRange))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
if re_postfix[i] == '}' { // Case 1 above
|
|
endRangeNum = startRangeNum
|
|
} else {
|
|
if re_postfix[i] != ',' {
|
|
return nil, fmt.Errorf("Invalid numeric specifier.")
|
|
}
|
|
i++ // Skip comma
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
endRange = append(endRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if i == len(re_postfix) {
|
|
return nil, fmt.Errorf("Brace not closed.")
|
|
}
|
|
if re_postfix[i] != '}' {
|
|
return nil, fmt.Errorf("Invalid numeric specifier.")
|
|
}
|
|
if len(endRange) == 0 { // Case 3 above
|
|
endRangeNum = INFINITE_REPS
|
|
} else { // Case 2 above
|
|
var err error
|
|
endRangeNum, err = strconv.Atoi(string(endRange))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
}
|
|
|
|
idx := len(outQueue) - 1
|
|
// Get the last added node
|
|
if idx < 0 || outQueue[idx].nodetype == LPAREN {
|
|
return nil, fmt.Errorf("Numeric specifier with no content.")
|
|
}
|
|
outQueue[idx].startReps = startRangeNum
|
|
outQueue[idx].endReps = endRangeNum
|
|
}
|
|
if c == '(' || c == NONCAPLPAREN_CHAR {
|
|
opStack = append(opStack, c)
|
|
if c == '(' { // We only push _capturing_ group parentheses to outQueue
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
numOpenParens++
|
|
}
|
|
if c == ')' {
|
|
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Panic if we reach the end of the stack.
|
|
var val rune
|
|
var err error
|
|
for val, err = peek(opStack); val != '(' && val != NONCAPLPAREN_CHAR; val, err = peek(opStack) {
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Imbalanced parantheses.")
|
|
}
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
_ = mustPop(&opStack) // Get rid of opening parentheses
|
|
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
|
|
outQueue = append(outQueue, newPostfixNode(')')) // Add closing parentheses
|
|
}
|
|
numOpenParens--
|
|
}
|
|
}
|
|
|
|
// Pop all remaining operators (and append to outQueue)
|
|
for len(opStack) > 0 {
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
|
|
if numOpenParens != 0 {
|
|
return nil, fmt.Errorf("Imbalanced parantheses.")
|
|
}
|
|
|
|
return outQueue, nil
|
|
}
|
|
|
|
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
|
|
// Returns start state and number of groups in regex.
|
|
func thompson(re []postfixNode) (Reg, error) {
|
|
nfa := make([]*State, 0) // Stack of states
|
|
numGroups := 0 // Number of capturing groups
|
|
for _, c := range re {
|
|
if c.nodetype == CHARACTER || c.nodetype == ASSERTION {
|
|
state := State{}
|
|
state.transitions = make(map[int][]*State)
|
|
if c.allChars {
|
|
state.allChars = true
|
|
if len(c.except) != 0 {
|
|
// For each node that I am 'excepting' (eg. in an inverted character class):
|
|
// - If the node itself has exceptions, then the exceptions cancel out.
|
|
// Eg. [^\w] == [\W]
|
|
// - Since an allChars node is the only kind that _can_ have exceptions, that's what I check for.
|
|
// - If the node doesn't have exceptions (allChars == false) then the contents of the node are added to the except list.
|
|
for _, node := range c.except {
|
|
if node.allChars {
|
|
state.allChars = false
|
|
// For each postfixNode in node.except, extract the contents of the postfixNode. Concatenate them all,
|
|
// and them to the state's _content_. As mentioned above, if the exception has exceptions, then we can match
|
|
// those.
|
|
nodeExceptChars := slices.Concat(Map(node.except, func(node postfixNode) []rune {
|
|
return node.contents
|
|
})...)
|
|
state.content = rune2Contents(nodeExceptChars)
|
|
} else {
|
|
state.except = append(state.except, node.contents...)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Convert the current contents to []int, convert the result of rune2contents to []int, append then
|
|
// convert back to stateContents.
|
|
state.content = stateContents(append([]int(state.content), []int(rune2Contents(c.contents))...))
|
|
state.output = make([]*State, 0)
|
|
state.output = append(state.output, &state)
|
|
state.isEmpty = false
|
|
if c.nodetype == ASSERTION {
|
|
state.isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
|
|
state.content = newContents(EPSILON) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
|
|
if c.lookaroundDir == 0 || c.lookaroundSign == 0 {
|
|
switch c.contents[0] {
|
|
case '^':
|
|
state.assert = SOS
|
|
case '$':
|
|
state.assert = EOS
|
|
case 'b':
|
|
state.assert = WBOUND
|
|
case 'B':
|
|
state.assert = NONWBOUND
|
|
}
|
|
} else { // Lookaround
|
|
state.lookaroundRegex = string(c.contents)
|
|
if c.lookaroundDir == LOOKAHEAD {
|
|
if c.lookaroundSign == POSITIVE {
|
|
state.assert = PLA
|
|
}
|
|
if c.lookaroundSign == NEGATIVE {
|
|
state.assert = NLA
|
|
}
|
|
}
|
|
if c.lookaroundDir == LOOKBEHIND {
|
|
if c.lookaroundSign == POSITIVE {
|
|
state.assert = PLB
|
|
}
|
|
if c.lookaroundSign == NEGATIVE {
|
|
state.assert = NLB
|
|
}
|
|
}
|
|
tmpRe, err := shuntingYard(state.lookaroundRegex)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("Error parsing lookaround: %w", err)
|
|
}
|
|
reg, err := thompson(tmpRe)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("Error compiling lookaround: %w", err)
|
|
}
|
|
state.lookaroundNFA = reg.start
|
|
state.lookaroundNumCaptureGroups = reg.numGroups
|
|
|
|
}
|
|
}
|
|
nfa = append(nfa, &state)
|
|
}
|
|
if c.nodetype == LPAREN || c.nodetype == RPAREN {
|
|
s := &State{}
|
|
s.assert = NONE
|
|
s.content = newContents(EPSILON)
|
|
s.isEmpty = true
|
|
s.output = make([]*State, 0)
|
|
s.output = append(s.output, s)
|
|
s.transitions = make(map[int][]*State)
|
|
// LPAREN nodes are just added normally
|
|
if c.nodetype == LPAREN {
|
|
numGroups++
|
|
s.groupBegin = true
|
|
s.groupNum = numGroups
|
|
nfa = append(nfa, s)
|
|
continue
|
|
}
|
|
// For RPAREN nodes, I assume that the last two nodes in the list are an LPAREN,
|
|
// and then some other node.
|
|
// These three nodes (LPAREN, the middle node and RPAREN) are extracted together, concatenated
|
|
// and added back in.
|
|
if c.nodetype == RPAREN {
|
|
s.groupEnd = true
|
|
middleNode := mustPop(&nfa)
|
|
lparenNode := mustPop(&nfa)
|
|
s.groupNum = lparenNode.groupNum
|
|
tmp := concatenate(lparenNode, middleNode)
|
|
to_add := concatenate(tmp, s)
|
|
nfa = append(nfa, to_add)
|
|
|
|
}
|
|
}
|
|
if c.nodetype == CHARCLASS { // A Character class consists of all the nodes in it, alternated
|
|
// Map the list of nodes to a list of states, each state containing the contents of a specific node
|
|
states := Map(c.nodeContents, func(node postfixNode) *State {
|
|
s := newState()
|
|
s.content = rune2Contents(node.contents)
|
|
return &s
|
|
})
|
|
// Reduce the list of states down to a single state by alternating them
|
|
toAdd := Reduce(states, func(s1 *State, s2 *State) *State {
|
|
return alternate(s1, s2)
|
|
})
|
|
nfa = append(nfa, toAdd)
|
|
}
|
|
// Must be an operator if it isn't a character
|
|
switch c.nodetype {
|
|
case CONCATENATE:
|
|
s2 := mustPop(&nfa)
|
|
s1 := mustPop(&nfa)
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
case KLEENE: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
|
|
s1 := mustPop(&nfa)
|
|
stateToAdd := kleene(*s1)
|
|
nfa = append(nfa, stateToAdd)
|
|
case PLUS: // a+ is equivalent to aa*
|
|
s1 := mustPop(&nfa)
|
|
s2 := kleene(*s1)
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
case QUESTION: // ab? is equivalent to a(b|)
|
|
s1 := mustPop(&nfa)
|
|
s2 := question(s1)
|
|
nfa = append(nfa, s2)
|
|
case PIPE:
|
|
s1 := mustPop(&nfa)
|
|
s2 := mustPop(&nfa)
|
|
s3 := alternate(s1, s2)
|
|
nfa = append(nfa, s3)
|
|
}
|
|
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
|
|
if c.endReps != -1 && c.endReps < c.startReps {
|
|
return Reg{}, fmt.Errorf("Numeric specifier - start greater than end.")
|
|
}
|
|
state := mustPop(&nfa)
|
|
var stateToAdd *State = nil
|
|
// Take advantage of the following facts:
|
|
// a{5} == aaaaa
|
|
// a{3,5} == aaaa?a?
|
|
// a{5,} == aaaaa+
|
|
// Nov. 3 2024 - I have two choices on how I want to implement numeric
|
|
// specifiers.
|
|
// a. Encode the logic while creating the states. I will have to create a function
|
|
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
|
|
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
|
|
// not work). Creating this function might be a lot of work.
|
|
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
|
|
// at this point, I can leave thompson untouched.
|
|
for i := 0; i < c.startReps; i++ { // Case 1
|
|
stateToAdd = concatenate(stateToAdd, cloneState(state))
|
|
}
|
|
if c.endReps == INFINITE_REPS { // Case 3
|
|
s2 := kleene(*state)
|
|
stateToAdd = concatenate(stateToAdd, s2)
|
|
} else { // Case 2
|
|
for i := c.startReps; i < c.endReps; i++ {
|
|
stateToAdd = concatenate(stateToAdd, question(cloneState(state)))
|
|
}
|
|
}
|
|
nfa = append(nfa, stateToAdd)
|
|
}
|
|
}
|
|
if len(nfa) != 1 {
|
|
return Reg{}, fmt.Errorf("Invalid Regex.")
|
|
}
|
|
|
|
verifyLastStates(nfa)
|
|
|
|
return Reg{nfa[0], numGroups}, nil
|
|
|
|
}
|
|
|
|
// Compiles the given regular expression into a Reg type, suitable for use with the
|
|
// matching functions. The second return value is non-nil if a compilation error has
|
|
// occured. As such, the error value must be checked before using the Reg returned by this function.
|
|
// The second parameter is an optional list of flags, passed to the parsing function shuntingYard.
|
|
func Compile(re string, flags ...ReFlag) (Reg, error) {
|
|
nodes, err := shuntingYard(re, flags...)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("Error parsing regex: %w", err)
|
|
}
|
|
reg, err := thompson(nodes)
|
|
if err != nil {
|
|
return Reg{}, fmt.Errorf("Error compiling regex: %w", err)
|
|
}
|
|
return reg, nil
|
|
}
|