You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

175 lines
5.8 KiB
Go

package main
import "slices"
const EPSILON int = 0
type assertType int
const (
NONE assertType = iota
SOS
EOS
WBOUND
NONWBOUND
)
type State struct {
content stateContents // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output []*State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
transitions map[int][]*State // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
}
// Checks if the given state's assertion is true. Returns true if the given
// state doesn't have an assertion.
func (s State) checkAssertion(str string, idx int) bool {
if s.assert == SOS {
return idx == 0
}
if s.assert == EOS {
return idx == len(str)
}
if s.assert == WBOUND {
return isWordBoundary(str, idx)
}
if s.assert == NONWBOUND {
return !isWordBoundary(str, idx)
}
return true
}
// Returns true if the contents of 's' contain the value at the given index of the given string
func (s State) contentContains(str string, idx int) bool {
if s.assert != NONE {
return s.checkAssertion(str, idx)
}
// Default - s.assert must be NONE
return slices.Contains(s.content, int(str[idx]))
}
// Returns the matches for the character at the given index of the given string.
// Also returns the number of matches. Returns -1 if an assertion failed.
func (s State) matchesFor(str string, idx int) ([]*State, int) {
// Assertions can be viewed as 'checks'. If the check fails, we return
// an empty array and 0.
// If it passes, we treat it like any other state, and return all the transitions.
if s.assert == SOS && idx != 0 {
return make([]*State, 0), -1
}
if s.assert == EOS && idx != len(str) {
return make([]*State, 0), -1
}
if s.assert == WBOUND && !isWordBoundary(str, idx) {
return make([]*State, 0), -1
}
if s.assert == NONWBOUND && isWordBoundary(str, idx) {
return make([]*State, 0), -1
}
return s.transitions[int(str[idx])], len(s.transitions[int(str[idx])])
}
type NFA struct {
start State
outputs []State
}
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
func verifyLastStatesHelper(state *State, visited map[*State]bool) {
if len(state.transitions) == 0 {
state.isLast = true
return
}
// if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a*
if len(state.transitions) == 1 { // Eg. a*
var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one
for _, c := range state.content {
if len(state.transitions[c]) != 1 || state.transitions[c][0] != state {
moreThanOneTrans = true
}
}
state.isLast = !moreThanOneTrans
}
if state.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
transitionDests := make([]*State, 0)
for _, v := range state.transitions {
transitionDests = append(transitionDests, v...)
}
if allEqual(transitionDests...) {
state.isLast = true
return
}
}
if visited[state] == true {
return
}
visited[state] = true
for _, states := range state.transitions {
for i := range states {
if states[i] != state {
verifyLastStatesHelper(states[i], visited)
}
}
}
}
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
func verifyLastStates(start []*State) {
verifyLastStatesHelper(start[0], make(map[*State]bool))
}
func concatenate(s1 *State, s2 *State) *State {
for i := range s1.output {
for _, c := range s2.content { // Create transitions for every element in s2's content to s2'
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], s2)
}
}
s1.output = s2.output
return s1
}
func kleene(s1 State) *State {
toReturn := &State{}
toReturn.transitions = make(map[int][]*State)
toReturn.content = newContents(EPSILON)
toReturn.isEmpty = true
toReturn.isKleene = true
toReturn.output = append(toReturn.output, toReturn)
for i := range s1.output {
for _, c := range toReturn.content {
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], toReturn)
}
}
for _, c := range s1.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], &s1)
}
return toReturn
}
func alternate(s1 *State, s2 *State) *State {
toReturn := &State{}
toReturn.transitions = make(map[int][]*State)
toReturn.output = append(toReturn.output, s1.output...)
toReturn.output = append(toReturn.output, s2.output...)
// Unique append is used here (and elsewhere) to ensure that,
// for any given transition, a state can only be mentioned once.
// For example, given the transition 'a', the state 's1' can only be mentioned once.
// This would lead to multiple instances of the same set of match indices, since both
// 's1' states would be considered to match.
for _, c := range s1.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s1)
}
for _, c := range s2.content {
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s2)
}
toReturn.content = newContents(EPSILON)
toReturn.isEmpty = true
return toReturn
}