You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
449 lines
15 KiB
Go
449 lines
15 KiB
Go
package main
|
|
|
|
import (
|
|
"bufio"
|
|
"flag"
|
|
"fmt"
|
|
"io"
|
|
"os"
|
|
"slices"
|
|
"strconv"
|
|
"unicode"
|
|
|
|
"github.com/fatih/color"
|
|
)
|
|
|
|
const CONCAT rune = '~'
|
|
|
|
func isOperator(c rune) bool {
|
|
if c == '+' || c == '?' || c == '*' || c == '|' || c == CONCAT {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
/* priority returns the priority of the given operator */
|
|
func priority(op rune) int {
|
|
precedence := []rune{'|', CONCAT, '+', '*', '?'}
|
|
return slices.Index(precedence, op)
|
|
}
|
|
|
|
/*
|
|
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
|
|
The primary benefit of this is getting rid of parentheses.
|
|
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
|
|
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
|
|
*/
|
|
func shuntingYard(re string) []postfixNode {
|
|
re_postfix := make([]rune, 0)
|
|
re_runes := []rune(re) // Convert the string to a slice of runes to allow iteration through it
|
|
/* Add concatenation operators.
|
|
Only add a concatenation operator between two characters if both the following conditions are met:
|
|
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
|
|
a. This makes sense, because these operators can't be _concatenated_ with anything else.
|
|
2. The second character isn't a 'closing operator' - one that applies to something before it
|
|
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
|
|
*/
|
|
i := 0
|
|
for i < len(re_runes) {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
if re_runes[i] == '[' && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped
|
|
re_postfix[len(re_postfix)-1] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
|
|
invertMatch := false
|
|
toAppend := make([]rune, 0) // Holds all the runes in the current character class
|
|
if i < len(re_runes)-1 && re_runes[i+1] == '^' { // Inverting class - match everything NOT in brackets
|
|
invertMatch = true
|
|
i++
|
|
}
|
|
if i < len(re_runes)-1 && re_runes[i+1] == ']' { // Nothing inside brackets - panic.
|
|
panic("Empty character class.")
|
|
}
|
|
for re_runes[i] != ']' {
|
|
i++ // Skip all characters inside brackets
|
|
// TODO: Check for escaped characters
|
|
|
|
// Check ahead for character range
|
|
if i < len(re_runes)-2 && re_runes[i+1] == '-' {
|
|
rangeStart := re_runes[i]
|
|
rangeEnd := re_runes[i+2]
|
|
if int(rangeEnd) < int(rangeStart) {
|
|
panic("Range is out of order.")
|
|
}
|
|
|
|
for i := rangeStart; i <= rangeEnd; i++ {
|
|
toAppend = append(toAppend, i)
|
|
}
|
|
|
|
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
|
|
continue
|
|
}
|
|
toAppend = append(toAppend, re_runes[i])
|
|
}
|
|
// Replace the last character (which should have been ']', with RBRACKET
|
|
toAppend[len(toAppend)-1] = RBRACKET
|
|
if invertMatch {
|
|
toAppend = setDifference(dotChars(), toAppend) // Take the inverse of the set by getting the difference between it and all dot characters
|
|
toAppend = append(toAppend, RBRACKET) // Since RBRACKET doesn't exist in dotChars, it wouldn't have been return in setDifference. We manually append it here.
|
|
}
|
|
re_postfix = append(re_postfix, toAppend...)
|
|
}
|
|
if re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
|
|
i++ // Skip opening brace
|
|
for i < len(re_runes) && re_runes[i] != '}' {
|
|
re_postfix = append(re_postfix, re_runes[i])
|
|
i++
|
|
}
|
|
if i == len(re_runes) {
|
|
panic("Invalid numeric specifier.")
|
|
}
|
|
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
|
|
}
|
|
if (re_runes[i] != '(' && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
|
|
if i < len(re_runes)-1 {
|
|
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
|
|
re_postfix = append(re_postfix, CONCAT)
|
|
}
|
|
}
|
|
}
|
|
i++
|
|
}
|
|
|
|
opStack := make([]rune, 0) // Operator stack
|
|
outQueue := make([]postfixNode, 0) // Output queue
|
|
|
|
// Actual algorithm
|
|
for i := 0; i < len(re_postfix); i++ {
|
|
/* Two cases:
|
|
1. Current character is alphanumeric - send to output queue
|
|
2. Current character is operator - do the following:
|
|
a. If current character has greater priority than top of opStack, push to opStack.
|
|
b. If not, keep popping from opStack (and appending to outQueue) until:
|
|
i. opStack is empty, OR
|
|
ii. current character has greater priority than top of opStack
|
|
3. If current character is '(', push to opStack
|
|
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
|
|
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
|
|
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
|
|
*/
|
|
c := re_postfix[i]
|
|
if isAlphaNum(c) {
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
continue
|
|
}
|
|
// Escape character
|
|
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
|
|
if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
|
|
panic("ERROR: Backslash with no escape character.")
|
|
}
|
|
i++
|
|
outQueue = append(outQueue, newEscapedNode(re_postfix[i]))
|
|
continue // Escaped character will automatically be skipped when loop variable increments
|
|
}
|
|
|
|
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
|
|
outQueue = append(outQueue, newPostfixNode(dotChars()...))
|
|
continue
|
|
}
|
|
if c == '^' { // Start-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
if c == '$' { // End-of-string assertion
|
|
outQueue = append(outQueue, newPostfixNode(c))
|
|
}
|
|
|
|
if isOperator(c) {
|
|
if len(opStack) == 0 {
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
topStack, err := peek(opStack)
|
|
if err != nil {
|
|
panic("ERROR: Operator without operand.")
|
|
}
|
|
if priority(c) > priority(topStack) { // 2a
|
|
opStack = append(opStack, c)
|
|
} else {
|
|
for priority(c) <= priority(topStack) { // 2b
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
topStack, _ = peek(opStack)
|
|
}
|
|
opStack = append(opStack, c)
|
|
}
|
|
}
|
|
}
|
|
if c == LBRACKET { // Used for character classes
|
|
i++ // Step forward so we can look at the character class
|
|
chars := make([]rune, 0) // List of characters - used only for character classes
|
|
for i < len(re_postfix) {
|
|
if re_postfix[i] == RBRACKET {
|
|
break
|
|
}
|
|
chars = append(chars, re_postfix[i])
|
|
i++
|
|
}
|
|
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
|
|
panic("ERROR: Opening bracket without closing bracket.")
|
|
}
|
|
outQueue = append(outQueue, newPostfixNode(chars...))
|
|
// i++ // Step forward to skip closing bracket
|
|
continue
|
|
}
|
|
if c == '{' {
|
|
i++ // Skip opening brace
|
|
// Three possibilities:
|
|
// 1. Single number - {5}
|
|
// 2. Range - {3,5}
|
|
// 3. Start with no end, {3,}
|
|
startRange := make([]rune, 0)
|
|
startRangeNum := 0
|
|
endRange := make([]rune, 0)
|
|
endRangeNum := 0
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
startRange = append(startRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if len(startRange) == 0 { // {} is not valid, neither is {,5}
|
|
panic("ERROR: Invalid numeric specifier.")
|
|
}
|
|
if i == len(re_postfix) {
|
|
panic("ERROR: Brace not closed.")
|
|
}
|
|
|
|
startRangeNum, err := strconv.Atoi(string(startRange))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
if re_postfix[i] == '}' { // Case 1 above
|
|
endRangeNum = startRangeNum
|
|
} else {
|
|
if re_postfix[i] != ',' {
|
|
panic("ERROR: Invalid numeric specifier.")
|
|
}
|
|
i++ // Skip comma
|
|
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
|
|
endRange = append(endRange, re_postfix[i])
|
|
i++
|
|
}
|
|
if i == len(re_postfix) {
|
|
panic("ERROR: Brace not closed.")
|
|
}
|
|
if re_postfix[i] != '}' {
|
|
panic("ERROR: Invalid numeric specifier.")
|
|
}
|
|
if len(endRange) == 0 { // Case 3 above
|
|
endRangeNum = INFINITE_REPS
|
|
} else { // Case 2 above
|
|
var err error
|
|
endRangeNum, err = strconv.Atoi(string(endRange))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
}
|
|
node, err := pop(&outQueue)
|
|
if err != nil {
|
|
panic("Numeric specifier with no content.")
|
|
}
|
|
node.startReps = startRangeNum
|
|
node.endReps = endRangeNum
|
|
outQueue = append(outQueue, node)
|
|
}
|
|
if c == '(' {
|
|
opStack = append(opStack, c)
|
|
}
|
|
if c == ')' {
|
|
// Keep popping from opStack until we encounter an opening parantheses. Panic if we reach the end of the stack.
|
|
for val, err := peek(opStack); val != '('; val, err = peek(opStack) {
|
|
if err != nil {
|
|
panic("ERROR: Imbalanced parantheses.")
|
|
}
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
_ = mustPop(&opStack) // Get rid of opening parantheses
|
|
}
|
|
}
|
|
|
|
// Pop all remaining operators (and append to outQueue)
|
|
for len(opStack) > 0 {
|
|
to_append := mustPop(&opStack)
|
|
outQueue = append(outQueue, newPostfixNode(to_append))
|
|
}
|
|
|
|
return outQueue
|
|
}
|
|
|
|
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
|
|
// Returns start state.
|
|
func thompson(re []postfixNode) *State {
|
|
nfa := make([]*State, 0) // Stack of states
|
|
for _, c := range re {
|
|
if c.nodetype == CHARACTER || c.nodetype == ASSERTION {
|
|
state := State{}
|
|
state.transitions = make(map[int][]*State)
|
|
state.content = rune2Contents(c.contents)
|
|
state.output = make([]*State, 0)
|
|
state.output = append(state.output, &state)
|
|
state.isEmpty = false
|
|
if c.nodetype == ASSERTION {
|
|
state.content = newContents(EPSILON) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
|
|
state.isEmpty = true
|
|
switch c.contents[0] {
|
|
case '^':
|
|
state.assert = SOS
|
|
case '$':
|
|
state.assert = EOS
|
|
case 'b':
|
|
state.assert = WBOUND
|
|
case 'B':
|
|
state.assert = NONWBOUND
|
|
}
|
|
}
|
|
nfa = append(nfa, &state)
|
|
}
|
|
// Must be an operator if it isn't a character
|
|
switch c.nodetype {
|
|
case CONCATENATE:
|
|
s2 := mustPop(&nfa)
|
|
s1 := mustPop(&nfa)
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
case KLEENE: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
|
|
s1 := mustPop(&nfa)
|
|
stateToAdd := kleene(*s1)
|
|
nfa = append(nfa, stateToAdd)
|
|
case PLUS: // a+ is equivalent to aa*
|
|
s1 := mustPop(&nfa)
|
|
s2 := kleene(*s1)
|
|
s1 = concatenate(s1, s2)
|
|
nfa = append(nfa, s1)
|
|
case QUESTION: // ab? is equivalent to a(b|)
|
|
s1 := mustPop(&nfa)
|
|
s2 := question(s1)
|
|
nfa = append(nfa, s2)
|
|
case PIPE:
|
|
s1 := mustPop(&nfa)
|
|
s2 := mustPop(&nfa)
|
|
s3 := alternate(s1, s2)
|
|
nfa = append(nfa, s3)
|
|
}
|
|
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
|
|
if c.endReps != -1 && c.endReps < c.startReps {
|
|
panic("ERROR: Numeric specifier - start greater than end.")
|
|
}
|
|
state := mustPop(&nfa)
|
|
var stateToAdd *State = nil
|
|
// Take advantage of the following facts:
|
|
// a{5} == aaaaa
|
|
// a{3,5} == aaaa?a?
|
|
// a{5,} == aaaaa+
|
|
// Nov. 3 2024 - I have two choices on how I want to implement numeric
|
|
// specifiers.
|
|
// a. Encode the logic while creating the states. I will have to create a function
|
|
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
|
|
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
|
|
// not work). Creating this function might be a lot of work.
|
|
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
|
|
// at this point, I can leave thompson untouched.
|
|
for i := 0; i < c.startReps; i++ { // Case 1
|
|
stateToAdd = concatenate(stateToAdd, cloneState(state))
|
|
}
|
|
if c.endReps == INFINITE_REPS { // Case 3
|
|
s2 := kleene(*state)
|
|
stateToAdd = concatenate(stateToAdd, s2)
|
|
} else { // Case 2
|
|
for i := c.startReps; i < c.endReps; i++ {
|
|
stateToAdd = concatenate(stateToAdd, question(state))
|
|
}
|
|
}
|
|
nfa = append(nfa, stateToAdd)
|
|
}
|
|
}
|
|
if len(nfa) != 1 {
|
|
panic("ERROR: Invalid Regex.")
|
|
}
|
|
|
|
verifyLastStates(nfa)
|
|
|
|
return nfa[0]
|
|
|
|
}
|
|
|
|
func main() {
|
|
invertFlag := flag.Bool("v", false, "Invert match.")
|
|
// This flag has two 'modes':
|
|
// 1. Without '-v': Prints only matches. Prints a newline after every match.
|
|
// 2. With '-v': Substitutes all matches with empty string.
|
|
onlyFlag := flag.Bool("o", false, "Print only colored content.")
|
|
flag.Parse()
|
|
|
|
// Process:
|
|
// 1. Convert regex into postfix notation (Shunting-Yard algorithm)
|
|
// a. Add explicit concatenation operators to facilitate this
|
|
// 2. Build NFA from postfix representation (Thompson's algorithm)
|
|
// 3. Run the string against the NFA
|
|
|
|
if len(flag.Args()) != 1 { // flag.Args() also strips out program name
|
|
fmt.Println("ERROR: Missing cmdline args")
|
|
os.Exit(22)
|
|
}
|
|
var re string
|
|
re = flag.Args()[0]
|
|
var test_str string
|
|
var err error
|
|
// Create reader for stdin and writer for stdout
|
|
reader := bufio.NewReader(os.Stdin)
|
|
out := bufio.NewWriter(os.Stdout)
|
|
|
|
re_postfix := shuntingYard(re)
|
|
startState := thompson(re_postfix)
|
|
// Read every string from stdin until we encounter an error. If the error isn't EOF, panic.'
|
|
for test_str, err = reader.ReadString('\n'); err == nil; test_str, err = reader.ReadString('\n') {
|
|
matchIndices := findAllMatches(startState, test_str)
|
|
// Decompose the array of matchIndex structs into a flat unique array of ints - if matchIndex is {4,7}, flat array will contain 4,5,6
|
|
// This should make checking O(1) instead of O(n)
|
|
indicesToPrint := new_uniq_arr[int]()
|
|
for _, idx := range matchIndices {
|
|
indicesToPrint.add(genRange(idx.startIdx, idx.endIdx)...)
|
|
}
|
|
// If we are inverting, then we should print the indices which _didn't_ match
|
|
// in color.
|
|
if *invertFlag {
|
|
oldIndices := indicesToPrint.values()
|
|
indicesToPrint = new_uniq_arr[int]()
|
|
// Explanation:
|
|
// Find all numbers from 0 to len(test_str) that are NOT in oldIndices.
|
|
// These are the values we want to print, now that we have inverted the match.
|
|
// Re-initialize indicesToPrint and add all of these values to it.
|
|
indicesToPrint.add(setDifference(genRange(0, len(test_str)), oldIndices)...)
|
|
|
|
}
|
|
for i, c := range test_str {
|
|
if indicesToPrint.contains(i) {
|
|
color.New(color.FgRed).Fprintf(out, "%c", c)
|
|
// Newline after every match - only if -v is disabled.
|
|
if !(*invertFlag) {
|
|
for _, idx := range matchIndices {
|
|
if i+1 == idx.endIdx { // End index is one more than last index of match
|
|
fmt.Fprintf(out, "\n")
|
|
break
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if !(*onlyFlag) {
|
|
fmt.Fprintf(out, "%c", c)
|
|
}
|
|
}
|
|
}
|
|
err = out.Flush()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
if err != io.EOF {
|
|
panic(err)
|
|
}
|
|
}
|