You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kleingrep/regex/nfa.go

438 lines
16 KiB
Go

package regex
5 months ago
import (
"fmt"
"slices"
)
const epsilon int = 0xF0000
5 months ago
type assertType int
const (
noneAssert assertType = iota
sosAssert // Start of string (^)
soiAssert // Start of input (\A)
eosAssert // End of string ($)
eoiAssert // End of input (\Z)
wboundAssert
nonwboundAssert
plaAssert // Positive lookahead
nlaAssert // Negative lookahead
plbAssert // Positive lookbehind
nlbAssert // Negative lookbehind
alwaysTrueAssert // An assertion that is always true
)
type nfaState struct {
content stateContents // Contents of current state
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
isLast bool // If it is the last state (acept state)
output []*nfaState // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
// transitions map[int][]*nfaState // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
next *nfaState // The next state (not for alternation or kleene states)
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
isQuestion bool // Identifies whether current node is a 0-state representing the question operator
isAlternation bool // Identifies whether current node is a 0-state representing an alternation
splitState *nfaState // Only for alternation states - the 'other' branch of the alternation ('next' is the first)
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
lookaroundNFA *nfaState // Holds the NFA of the lookaroundRegex - if it exists
lookaroundNumCaptureGroups int // Number of capturing groups in lookaround regex if current node is a lookaround
groupBegin bool // Whether or not the node starts a capturing group
groupEnd bool // Whether or not the node ends a capturing group
groupNum int // Which capturing group the node starts / ends
// The following properties depend on the current match - I should think about resetting them for every match.
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
threadGroups []Group // Assuming that a state is part of a 'thread' in the matching process, this array stores the indices of capturing groups in the current thread. As matches are found for this state, its groups will be copied over.
}
// Clones the NFA starting from the given state.
func cloneState(start *nfaState) *nfaState {
return cloneStateHelper(start, make(map[*nfaState]*nfaState))
}
// Helper function for clone. The map is used to keep track of which states have
// already been copied, and which ones haven't.
// This function was created using output from Llama3.1:405B.
func cloneStateHelper(stateToClone *nfaState, cloneMap map[*nfaState]*nfaState) *nfaState {
// Base case - if the clone exists in our map, return it.
if clone, exists := cloneMap[stateToClone]; exists {
return clone
}
if stateToClone == nil {
return nil
}
// Recursive case - if the clone doesn't exist, create it, add it to the map,
// and recursively call for each of the transition states.
clone := &nfaState{
content: append([]int{}, stateToClone.content...),
isEmpty: stateToClone.isEmpty,
isLast: stateToClone.isLast,
output: make([]*nfaState, len(stateToClone.output)),
isKleene: stateToClone.isKleene,
isQuestion: stateToClone.isQuestion,
isAlternation: stateToClone.isAlternation,
assert: stateToClone.assert,
zeroMatchFound: stateToClone.zeroMatchFound,
allChars: stateToClone.allChars,
except: append([]rune{}, stateToClone.except...),
lookaroundRegex: stateToClone.lookaroundRegex,
groupEnd: stateToClone.groupEnd,
groupBegin: stateToClone.groupBegin,
groupNum: stateToClone.groupNum,
}
cloneMap[stateToClone] = clone
for i, s := range stateToClone.output {
if s == stateToClone {
clone.output[i] = clone
} else {
clone.output[i] = cloneStateHelper(s, cloneMap)
}
}
if stateToClone.lookaroundNFA == stateToClone {
clone.lookaroundNFA = clone
}
clone.lookaroundNFA = cloneStateHelper(stateToClone.lookaroundNFA, cloneMap)
if stateToClone.splitState == stateToClone {
clone.splitState = clone
}
clone.splitState = cloneStateHelper(stateToClone.splitState, cloneMap)
if stateToClone.next == stateToClone {
clone.next = clone
}
clone.next = cloneStateHelper(stateToClone.next, cloneMap)
return clone
}
// Reset any thread-related fields of the NFA starting from the given state.
func resetThreads(start *nfaState) {
visitedMap := make(map[*nfaState]bool) // The value type doesn't matter here
resetThreadsHelper(start, visitedMap)
}
func resetThreadsHelper(state *nfaState, visitedMap map[*nfaState]bool) {
if state == nil {
return
}
if _, ok := visitedMap[state]; ok {
return
}
// Assuming it hasn't been visited
state.threadGroups = nil
visitedMap[state] = true
if state.isAlternation {
resetThreadsHelper(state.next, visitedMap)
resetThreadsHelper(state.splitState, visitedMap)
} else {
resetThreadsHelper(state.next, visitedMap)
}
}
// Checks if the given state's assertion is true. Returns true if the given
// state doesn't have an assertion.
func (s nfaState) checkAssertion(str []rune, idx int) bool {
if s.assert == alwaysTrueAssert {
return true
}
if s.assert == sosAssert {
// Single-line mode: Beginning of string
// Multi-line mode: Previous character was newline
return idx == 0 || (multilineMode && (idx > 0 && str[idx-1] == '\n'))
}
if s.assert == eosAssert {
// Single-line mode: End of string
// Multi-line mode: current character is newline
// Index is at the end of the string, or it points to the last character which is a newline
return idx == len(str) || (multilineMode && str[idx] == '\n')
}
if s.assert == soiAssert {
// Only true at the start of the input, regardless of mode
return idx == 0
}
if s.assert == eoiAssert {
// Only true at the end of the input, regardless of mode
return idx == len(str)
}
if s.assert == wboundAssert {
return isWordBoundary(str, idx)
}
if s.assert == nonwboundAssert {
return !isWordBoundary(str, idx)
}
if s.isLookaround() {
// The process here is simple:
// 1. Compile the regex stored in the state's contents.
// 2. Run it on a subset of the test string, that ends after the current index in the string
// 3. Based on the kind of lookaround (and the indices we get), determine what action to take.
startState := s.lookaroundNFA
var runesToMatch []rune
var strToMatch string
if s.assert == plaAssert || s.assert == nlaAssert {
runesToMatch = str[idx:]
} else {
runesToMatch = str[:idx]
}
if len(runesToMatch) == 0 {
strToMatch = ""
} else {
strToMatch = string(runesToMatch)
}
regComp := Reg{startState, s.lookaroundNumCaptureGroups}
matchIndices := regComp.FindAll(strToMatch)
numMatchesFound := 0
for _, matchIdx := range matchIndices {
if s.assert == plaAssert || s.assert == nlaAssert { // Lookahead - return true (or false) if at least one match starts at 0. Zero is used because the test-string _starts_ from idx.
if matchIdx.StartIdx == 0 {
numMatchesFound++
}
}
if s.assert == plbAssert || s.assert == nlbAssert { // Lookbehind - return true (or false) if at least one match _ends_ at the current index.
if matchIdx.EndIdx == idx {
numMatchesFound++
}
}
}
if s.assert == plaAssert || s.assert == plbAssert { // Positive assertions want at least one match
return numMatchesFound > 0
}
if s.assert == nlaAssert || s.assert == nlbAssert { // Negative assertions only want zero matches
return numMatchesFound == 0
}
}
return true
}
// Returns true if the contents of 's' contain the value at the given index of the given string
func (s nfaState) contentContains(str []rune, idx int) bool {
if s.assert != noneAssert {
return s.checkAssertion(str, idx)
}
if idx >= len(str) {
return false
}
if s.allChars {
return !slices.Contains(slices.Concat(notDotChars, s.except), str[idx]) // Return true only if the index isn't a 'notDotChar', or isn't one of the exception characters for the current node.
}
// Default - s.assert must be NONE
return slices.Contains(s.content, int(str[idx]))
}
func (s nfaState) isLookaround() bool {
return s.assert == plaAssert || s.assert == plbAssert || s.assert == nlaAssert || s.assert == nlbAssert
}
func (s nfaState) numTransitions() int {
if s.next == nil && s.splitState == nil {
return 0
}
if s.next == nil || s.splitState == nil {
return 1
}
return 2
5 months ago
}
// Returns the matches for the character at the given index of the given string.
// Also returns the number of matches. Returns -1 if an assertion failed.
//func (s nfaState) matchesFor(str []rune, idx int) ([]*nfaState, int) {
// // Assertions can be viewed as 'checks'. If the check fails, we return
// // an empty array and 0.
// // If it passes, we treat it like any other state, and return all the transitions.
// if s.assert != noneAssert {
// if s.checkAssertion(str, idx) == false {
// return make([]*nfaState, 0), -1
// }
// }
// listTransitions := s.transitions[int(str[idx])]
// for _, dest := range s.transitions[int(anyCharRune)] {
// if !slices.Contains(slices.Concat(notDotChars, dest.except), str[idx]) {
// // Add an allChar state to the list of matches if:
// // a. The current character isn't a 'notDotChars' character. In single line mode, this includes newline. In multiline mode, it doesn't.
// // b. The current character isn't the state's exception list.
// listTransitions = append(listTransitions, dest)
// }
// }
// numTransitions := len(listTransitions)
// return listTransitions, numTransitions
//}
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
//func verifyLastStatesHelper(st *nfaState, visited map[*nfaState]bool) {
// if st.numTransitions() == 0 {
// st.isLast = true
// return
// }
// // if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a*
// if st.numTransitions() == 1 { // Eg. a*
// var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one
// for _, c := range st.content {
// if len(st.transitions[c]) != 1 || st.transitions[c][0] != st {
// moreThanOneTrans = true
// }
// }
// st.isLast = !moreThanOneTrans
// }
//
// if st.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
// transitionDests := make([]*nfaState, 0)
// for _, v := range st.transitions {
// transitionDests = append(transitionDests, v...)
// }
// if allEqual(transitionDests...) {
// st.isLast = true
// return
// }
// }
// if visited[st] == true {
// return
// }
// visited[st] = true
// for _, states := range st.transitions {
// for i := range states {
// if states[i] != st {
// verifyLastStatesHelper(states[i], visited)
// }
// }
// }
//}
5 months ago
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
//func verifyLastStates(start []*nfaState) {
// verifyLastStatesHelper(start[0], make(map[*nfaState]bool))
//}
// Concatenates s1 and s2, returns the start of the concatenation.
func concatenate(s1 *nfaState, s2 *nfaState) *nfaState {
if s1 == nil {
return s2
}
for i := range s1.output {
s1.output[i].next = s2
}
s1.output = s2.output
return s1
}
func kleene(s1 *nfaState) (*nfaState, error) {
if s1.isEmpty && s1.assert != noneAssert {
return nil, fmt.Errorf("previous token is not quantifiable")
}
toReturn := &nfaState{}
toReturn.isEmpty = true
toReturn.isAlternation = true
toReturn.content = newContents(epsilon)
toReturn.splitState = s1
for i := range s1.output {
s1.output[i].next = toReturn
}
// toReturn := &nfaState{}
// toReturn.transitions = make(map[int][]*nfaState)
// toReturn.content = newContents(epsilon)
toReturn.isKleene = true
toReturn.output = append([]*nfaState{}, toReturn)
for i := range s1.output {
s1.output[i].next = toReturn
}
// for _, c := range s1.content {
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], &s1)
// }
//toReturn.kleeneState = &s1
return toReturn, nil
}
func alternate(s1 *nfaState, s2 *nfaState) *nfaState {
toReturn := &nfaState{}
// toReturn.transitions = make(map[int][]*nfaState)
toReturn.output = append(toReturn.output, s1.output...)
toReturn.output = append(toReturn.output, s2.output...)
// // Unique append is used here (and elsewhere) to ensure that,
// // for any given transition, a state can only be mentioned once.
// // For example, given the transition 'a', the state 's1' can only be mentioned once.
// // This would lead to multiple instances of the same set of match indices, since both
// // 's1' states would be considered to match.
// for _, c := range s1.content {
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], s1)
// }
// for _, c := range s2.content {
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], s2)
// }
toReturn.content = newContents(epsilon)
toReturn.isEmpty = true
toReturn.isAlternation = true
toReturn.next = s1
toReturn.splitState = s2
return toReturn
}
func question(s1 *nfaState) *nfaState { // Use the fact that ab? == a(b|)
s2 := &nfaState{}
// s2.transitions = make(map[int][]*nfaState)
s2.content = newContents(epsilon)
s2.output = append(s2.output, s2)
s2.isEmpty = true
s3 := alternate(s1, s2)
return s3
}
// Creates and returns a new state with the 'default' values.
func newState() nfaState {
ret := nfaState{
output: make([]*nfaState, 0),
// transitions: make(map[int][]*nfaState),
assert: noneAssert,
except: append([]rune{}, 0),
lookaroundRegex: "",
groupEnd: false,
groupBegin: false,
}
ret.output = append(ret.output, &ret)
return ret
}
// Creates and returns a state that _always_ has a zero-length match.
func zeroLengthMatchState() nfaState {
start := newState()
start.content = newContents(epsilon)
start.isEmpty = true
start.assert = alwaysTrueAssert
return start
}
func (s nfaState) equals(other nfaState) bool {
return slices.Equal(s.content, other.content) &&
s.isEmpty == other.isEmpty &&
s.isLast == other.isLast &&
slices.Equal(s.output, other.output) &&
s.next == other.next &&
s.isKleene == other.isKleene &&
s.isQuestion == other.isQuestion &&
s.isAlternation == other.isAlternation &&
s.splitState == other.splitState &&
s.assert == other.assert &&
s.allChars == other.allChars &&
slices.Equal(s.except, other.except) &&
s.lookaroundNFA == other.lookaroundNFA &&
s.groupBegin == other.groupBegin &&
s.groupEnd == other.groupEnd &&
s.groupNum == other.groupNum &&
slices.Equal(s.threadGroups, other.threadGroups)
}
func stateExists(list []nfaState, s nfaState) bool {
for i := range list {
if list[i].equals(s) {
return true
}
}
return false
}