Removed a bunch of unused code (let's go!!!)

implementPCREMatchingRules
Aadhavan Srinivasan 4 weeks ago
parent 6334435b83
commit c6ad4caa0d

@ -2,7 +2,6 @@ package regex
import ( import (
"fmt" "fmt"
"sort"
) )
// A Match represents a match found by the regex in a given string. // A Match represents a match found by the regex in a given string.
@ -69,30 +68,6 @@ func getZeroGroup(m Match) Group {
return m[0] return m[0]
} }
// Prunes the slice by removing overlapping indices.
func pruneIndices(indices []Match) []Match {
// First, sort the slice by the start indices
sort.Slice(indices, func(i, j int) bool {
return indices[i][0].StartIdx < indices[j][0].StartIdx
})
toRet := make([]Match, 0, len(indices))
current := indices[0]
for _, idx := range indices[1:] {
// idx doesn't overlap with current (starts after current ends), so add current to result
// and update the current.
if idx[0].StartIdx >= current[0].EndIdx {
toRet = append(toRet, current)
current = idx
} else if idx[0].EndIdx > current[0].EndIdx {
// idx overlaps, but it is longer, so update current
current = idx
}
}
// Add last state
toRet = append(toRet, current)
return toRet
}
func copyThread(to *nfaState, from nfaState) { func copyThread(to *nfaState, from nfaState) {
to.threadGroups = append([]Group{}, from.threadGroups...) to.threadGroups = append([]Group{}, from.threadGroups...)
} }
@ -223,9 +198,6 @@ func (regex Reg) FindAllSubmatch(str string) []Match {
indices = append(indices, matchIdx) indices = append(indices, matchIdx)
} }
} }
if len(indices) > 0 {
return pruneIndices(indices)
}
return indices return indices
} }
@ -272,8 +244,6 @@ func addStateToList(str []rune, idx int, list []nfaState, state nfaState, thread
// Helper for FindAllMatches. Returns whether it found a match, the // Helper for FindAllMatches. Returns whether it found a match, the
// first Match it finds, and how far it got into the string ie. where // first Match it finds, and how far it got into the string ie. where
// the next search should start from. // the next search should start from.
//
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups int) (bool, Match, int) { func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups int) (bool, Match, int) {
// Base case - exit if offset exceeds string's length // Base case - exit if offset exceeds string's length
if offset > len(str) { if offset > len(str) {
@ -282,21 +252,9 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
} }
resetThreads(start) resetThreads(start)
// Hold a list of match indices for the current run. When we
// can no longer find a match, the match with the largest range is
// chosen as the match for the entire string.
// This allows us to pick the longest possible match (which is how greedy matching works).
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
// tempIndices := newMatch(numGroups + 1)
// foundPath := false
//startIdx := offset
//endIdx := offset
currentStates := make([]nfaState, 0) currentStates := make([]nfaState, 0)
nextStates := make([]nfaState, 0) nextStates := make([]nfaState, 0)
// tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
i := offset // Index in string i := offset // Index in string
//startingFrom := i // Store starting index
// If the first state is an assertion, makes sure the assertion // If the first state is an assertion, makes sure the assertion
// is true before we do _anything_ else. // is true before we do _anything_ else.
@ -306,29 +264,11 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
return false, []Group{}, i return false, []Group{}, i
} }
} }
// Increment until we hit a character matching the start state (assuming not 0-state)
// if start.isEmpty == false {
// for i < len(str) && !start.contentContains(str, i) {
// i++
// }
// startIdx = i
// startingFrom = i
// i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
// }
// start.threadGroups = newMatch(numGroups + 1)
// Check if the start state begins a group - if so, add the start index to our list
//if start.groupBegin {
// start.threadGroups[start.groupNum].StartIdx = i
// tempIndices[start.groupNum].startIdx = i
//}
start.threadGroups = newMatch(numGroups + 1) start.threadGroups = newMatch(numGroups + 1)
start.threadGroups[0].StartIdx = i start.threadGroups[0].StartIdx = i
currentStates = addStateToList(str, i, currentStates, *start, start.threadGroups, nil) currentStates = addStateToList(str, i, currentStates, *start, start.threadGroups, nil)
var match Match = nil var match Match = nil
// var isEmptyAndNoAssertion bool
// Main loop
for idx := i; idx <= len(str); idx++ { for idx := i; idx <= len(str); idx++ {
if len(currentStates) == 0 { if len(currentStates) == 0 {
break break
@ -350,76 +290,6 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
nextStates = addStateToList(str, idx+1, nextStates, *currentState.next, currentState.threadGroups, nil) nextStates = addStateToList(str, idx+1, nextStates, *currentState.next, currentState.threadGroups, nil)
} }
} }
// if currentState.groupBegin {
// currentState.threadGroups[currentState.groupNum].StartIdx = idx
// }
// if currentState.groupEnd {
// currentState.threadGroups[currentState.groupNum].EndIdx = idx
// }
// Alternation - enqueue left then right state, and continue
// if currentState.isAlternation {
// if currentState.isKleene { // Reverse order of adding things
// rightState := currentState.splitState
// copyThread(rightState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+1, *rightState)
// leftState := currentState.next
// copyThread(leftState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+2, *leftState)
// } else {
// leftState := currentState.next
// copyThread(leftState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+1, *leftState)
// rightState := currentState.splitState
// copyThread(rightState, currentState)
// currentStates = slices.Insert(currentStates, currentStateIdx+2, *rightState)
// }
// continue
// }
// Empty state - enqueue next state, do _not_ increment the SP
// if !currentState.isAlternation && currentState.isEmpty && currentState.assert == noneAssert { //&& currentState.groupBegin == false && currentState.groupEnd == false {
// isEmptyAndNoAssertion = true
// }
//
// if currentState.contentContains(str, idx) {
// foundMatch = true
// }
//
// if isEmptyAndNoAssertion || foundMatch {
// nextMatch := *(currentState.next)
// copyThread(&nextMatch, currentState)
// if currentState.groupBegin {
// // if !stateExists(currentStates, nextMatch) {
// currentStates = slices.Insert(currentStates, currentStateIdx+1, nextMatch)
// //}
// } else if currentState.groupEnd {
// if !stateExists(currentStates, nextMatch) {
// currentStates = slices.Insert(currentStates, currentStateIdx+1, nextMatch) // append(currentStates, nextMatch)
// }
// } else if currentState.assert != noneAssert {
// if !stateExists(currentStates, nextMatch) {
// currentStates = append(currentStates, nextMatch)
// }
// } else if currentState.isEmpty && !currentState.groupBegin && !currentState.groupEnd {
// if !stateExists(currentStates, nextMatch) {
// currentStates = append(currentStates, nextMatch)
// }
// } else {
// if !stateExists(nextStates, nextMatch) {
// nextStates = append(nextStates, nextMatch)
// }
// }
// }
//
// if currentState.isLast && len(nextStates) == 0 { // Last state reached
// currentState.threadGroups[0].EndIdx = idx
// if idx == currentState.threadGroups[0].StartIdx {
// idx += 1
// }
// return true, currentState.threadGroups, idx
// }
} }
currentStates = append([]nfaState{}, nextStates...) currentStates = append([]nfaState{}, nextStates...)
nextStates = nil nextStates = nil
@ -431,196 +301,4 @@ func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups in
return true, match, match[0].EndIdx return true, match, match[0].EndIdx
} }
return false, []Group{}, i + 1 return false, []Group{}, i + 1
// zeroStates := make([]*nfaState, 0)
// // Keep taking zero-states, until there are no more left to take
// // Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
// topStateItem := currentStates.peek()
// topState := topStateItem.(*priorQueueItem).state
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
// tempStates = append(tempStates, zeroStates...)
// num_appended := 0
// for isZero == true {
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
// if num_appended == 0 { // Break if we haven't appended any more unique values
// break
// }
// }
// if isZero == true {
// currentStates.Pop()
// }
//
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
// tempStates = nil
//
// // Take any transitions corresponding to current character
// numStatesMatched := 0 // The number of states which had at least 1 match for this round
// assertionFailed := false // Whether or not an assertion failed for this round
// lastStateInList := false // Whether or not a last state was in our list of states
// var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
// lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
// for numStatesMatched == 0 && lastStateInList == false {
// if currentStates.Len() == 0 {
// break
// }
// stateItem := heap.Pop(currentStates)
// state := stateItem.(*priorQueueItem).state
// matches, numMatches := state.matchesFor(str, i)
// if numMatches > 0 {
// numStatesMatched++
// tempStates = append([]*nfaState(nil), matches...)
// foundPath = true
// for _, m := range matches {
// if m.threadGroups == nil {
// m.threadGroups = newMatch(numGroups + 1)
// }
// m.threadSP = state.threadSP + 1
// copy(m.threadGroups, state.threadGroups)
// }
// }
// if numMatches < 0 {
// assertionFailed = true
// }
// if state.isLast {
// if state.isLookaround() {
// lastLookaroundInList = true
// }
// lastStateInList = true
// lastStatePtr = state
// }
// }
//
// if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
// // If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
// // state. The explanation below is my attempt to explain this behavior.
// // If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
// //
// // One of the states in our list was a last state and a lookaround. In this case, we
// // don't abort upon failure of the assertion, because we have found
// // another path to a final state.
// // Even if the last state _was_ an assertion, we can use the previously
// // saved indices to find a match.
// if lastLookaroundInList {
// break
// } else {
// if i == startingFrom {
// i++
// }
// return false, []Group{}, i
// }
// }
// // Check if we can find a state in our list that is:
// // a. A last-state
// // b. Empty
// // c. Doesn't assert anything
// for _, stateItem := range *currentStates {
// s := stateItem.state
// if s.isLast && s.isEmpty && s.assert == noneAssert {
// lastStatePtr = s
// lastStateInList = true
// }
// }
// if lastStateInList && numStatesMatched == 0 { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
// for j := 1; j < numGroups+1; j++ {
// tempIndices[j] = lastStatePtr.threadGroups[j]
// }
// endIdx = i
// tempIndices[0] = Group{startIdx, endIdx}
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx {
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
//
// // Check if we can find a zero-length match
// if foundPath == false {
// currentStatesList := funcMap(*currentStates, func(item *priorQueueItem) *nfaState {
// return item.state
// })
// if ok := zeroMatchPossible(str, i, numGroups, currentStatesList...); ok {
// if tempIndices[0].IsValid() == false {
// tempIndices[0] = Group{startIdx, startIdx}
// }
// }
// // If we haven't moved in the string, increment the counter by 1
// // to ensure we don't keep trying the same string over and over.
// // if i == startingFrom {
// startIdx++
// // i++
// // }
// if tempIndices.numValidGroups() > 0 && tempIndices[0].IsValid() {
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
// return false, []Group{}, startIdx
// }
// currentStates = &priorityQueue{}
// slices.Reverse(tempStates)
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
// tempStates = nil
//
// i++
// }
//
// // End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
// // This is the exact same algorithm used inside the loop, so I should probably put it in a function.
//
// if currentStates.Len() > 0 {
// topStateItem := currentStates.peek()
// topState := topStateItem.(*priorQueueItem).state
// zeroStates, isZero := takeZeroState([]*nfaState{topState}, numGroups, i)
// tempStates = append(tempStates, zeroStates...)
// num_appended := 0 // Number of unique states addded to tempStates
// for isZero == true {
// zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
// tempStates, num_appended = uniqueAppend(tempStates, zeroStates...)
// if num_appended == 0 { // Break if we haven't appended any more unique values
// break
// }
// }
// }
//
// for _, state := range tempStates {
// heap.Push(currentStates, newPriorQueueItem(state))
// }
//
// tempStates = nil
//
// for _, stateItem := range *currentStates {
// state := stateItem.state
// // Only add the match if the start index is in bounds. If the state has an assertion,
// // make sure the assertion checks out.
// if state.isLast && i <= len(str) {
// if state.assert == noneAssert || state.checkAssertion(str, i) {
// for j := 1; j < numGroups+1; j++ {
// tempIndices[j] = state.threadGroups[j]
// }
// endIdx = i
// tempIndices[0] = Group{startIdx, endIdx}
// }
// }
// }
//
// if tempIndices.numValidGroups() > 0 {
// if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
// return true, tempIndices, tempIndices[0].EndIdx + 1
// } else {
// return true, tempIndices, tempIndices[0].EndIdx
// }
// }
//
// if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
//
// startIdx++
// }
//
// return false, []Group{}, startIdx
} }

Loading…
Cancel
Save