You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

401 lines
14 KiB
Go

package main
import (
"fmt"
"sort"
)
// a Match stores a slice of all the capturing groups in a match.
type Match []Group
// a Group represents a group. It contains the start index and end index of the match
type Group struct {
startIdx int
endIdx int
}
func newMatch(size int) Match {
toRet := make([]Group, size)
for i := range toRet {
toRet[i].startIdx = -1
toRet[i].endIdx = -1
}
return toRet
}
// Returns the number of valid groups in the match
func (m Match) numValidGroups() int {
numValid := 0
for _, g := range m {
if g.startIdx >= 0 && g.endIdx >= 0 {
numValid++
}
}
return numValid
}
// Returns a string containing the indices of all (valid) groups in the match
func (m Match) toString() string {
var toRet string
for i, g := range m {
if g.isValid() {
toRet += fmt.Sprintf("Group %d\n", i)
toRet += g.toString()
toRet += "\n"
}
}
return toRet
}
// Converts the Group into a string representation:
func (idx Group) toString() string {
return fmt.Sprintf("%d\t%d", idx.startIdx, idx.endIdx)
}
// Returns whether a group contains valid indices
func (g Group) isValid() bool {
return g.startIdx >= 0 && g.endIdx >= 0
}
// takeZeroState takes the 0-state (if such a transition exists) for all states in the
// given slice. It returns the resulting states. If any of the resulting states is a 0-state,
// the second ret val is true.
// The third ret val is a list of all the group numbers of all the opening parentheses we crossed,
// and the fourth is a list of all the closing parentheses we passed
func takeZeroState(states []*State, numGroups int, idx int) (rtv []*State, isZero bool) {
for _, state := range states {
if len(state.transitions[EPSILON]) > 0 {
for _, s := range state.transitions[EPSILON] {
if s.threadGroups == nil {
s.threadGroups = newMatch(numGroups + 1)
}
copy(s.threadGroups, state.threadGroups)
if s.groupBegin {
s.threadGroups[s.groupNum].startIdx = idx
// openParenGroups = append(openParenGroups, s.groupNum)
}
if s.groupEnd {
s.threadGroups[s.groupNum].endIdx = idx
// closeParenGroups = append(closeParenGroups, s.groupNum)
}
}
rtv = append(rtv, state.transitions[EPSILON]...)
}
}
for _, state := range rtv {
if len(state.transitions[EPSILON]) > 0 {
return rtv, true
}
}
return rtv, false
}
// zeroMatchPossible returns true if a zero-length match is possible
// from any of the given states, given the string and our position in it.
// It uses the same algorithm to find zero-states as the one inside the loop,
// so I should probably put it in a function.
// It also returns all the capturing groups that both begin and end at the current index.
// This is because, by definition, zero-states don't move forward in the string.
func zeroMatchPossible(str []rune, idx int, numGroups int, states ...*State) (bool, []int, []int) {
allOpenParenGroups := make([]int, 0)
allCloseParenGroups := make([]int, 0)
zeroStates, isZero := takeZeroState(states, numGroups, idx)
tempstates := make([]*State, 0, len(zeroStates)+len(states))
tempstates = append(tempstates, states...)
tempstates = append(tempstates, zeroStates...)
num_appended := 0 // number of unique states addded to tempstates
for isZero == true {
zeroStates, isZero = takeZeroState(tempstates, numGroups, idx)
tempstates, num_appended = unique_append(tempstates, zeroStates...)
if num_appended == 0 { // break if we haven't appended any more unique values
break
}
}
for _, state := range tempstates {
if state.isEmpty && (state.assert == NONE || state.checkAssertion(str, idx)) && state.isLast {
return true, allOpenParenGroups, allCloseParenGroups
}
}
return false, allOpenParenGroups, allCloseParenGroups
}
// Prunes the slice by removing overlapping indices.
func pruneIndices(indices []Match) []Match {
// First, sort the slice by the start indices
sort.Slice(indices, func(i, j int) bool {
return indices[i][0].startIdx < indices[j][0].startIdx
})
toRet := make([]Match, 0, len(indices))
current := indices[0]
for _, idx := range indices[1:] {
// idx doesn't overlap with current (starts after current ends), so add current to result
// and update the current.
if idx[0].startIdx >= current[0].endIdx {
toRet = append(toRet, current)
current = idx
} else if idx[0].endIdx > current[0].endIdx {
// idx overlaps, but it is longer, so update current
current = idx
}
}
// Add last state
toRet = append(toRet, current)
return toRet
}
// findAllMatches tries to find all matches of the regex represented by given start-state, with
// the given string
func findAllMatches(start *State, str []rune, numGroups int) []Match {
idx := 0
var matchFound bool
var matchIdx Match
indices := make([]Match, 0)
for idx <= len(str) {
matchFound, matchIdx, idx = findAllMatchesHelper(start, str, idx, numGroups)
if matchFound {
indices = append(indices, matchIdx)
}
}
if len(indices) > 0 {
return pruneIndices(indices)
}
return indices
}
// Helper for findAllMatches. Returns whether it found a match, the
// first Match it finds, and how far it got into the string ie. where
// the next search should start from.
//
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
func findAllMatchesHelper(start *State, str []rune, offset int, numGroups int) (bool, Match, int) {
// Base case - exit if offset exceeds string's length
if offset > len(str) {
// The second value here shouldn't be used, because we should exit when the third return value is > than len(str)
return false, []Group{}, offset
}
// 'Base case' - if we are at the end of the string, check if we can add a zero-length match
if offset == len(str) {
// Get all zero-state matches. If we can get to a zero-state without matching anything, we
// can add a zero-length match. This is all true only if the start state itself matches nothing.
if start.isEmpty {
to_return := newMatch(numGroups + 1)
if start.groupBegin {
to_return[start.groupNum].startIdx = offset
}
if ok, openGrps, closeGrps := zeroMatchPossible(str, offset, numGroups, start); ok {
for _, gIdx := range openGrps {
to_return[gIdx].startIdx = offset
}
for _, gIdx := range closeGrps {
to_return[gIdx].endIdx = offset
}
to_return[0] = Group{offset, offset}
return true, to_return, offset + 1
}
}
return false, []Group{}, offset + 1
}
// Hold a list of match indices for the current run. When we
// can no longer find a match, the match with the largest range is
// chosen as the match for the entire string.
// This allows us to pick the longest possible match (which is how greedy matching works).
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
tempIndices := newMatch(numGroups + 1)
foundPath := false
startIdx := offset
endIdx := offset
currentStates := make([]*State, 0)
tempStates := make([]*State, 0) // Used to store states that should be used in next loop iteration
i := offset // Index in string
startingFrom := i // Store starting index
// If the first state is an assertion, makes sure the assertion
// is true before we do _anything_ else.
if start.assert != NONE {
if start.checkAssertion(str, offset) == false {
i++
return false, []Group{}, i
}
}
// Increment until we hit a character matching the start state (assuming not 0-state)
if start.isEmpty == false {
for i < len(str) && !start.contentContains(str, i) {
i++
}
startIdx = i
startingFrom = i
i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
}
start.threadGroups = newMatch(numGroups + 1)
// Check if the start state begins a group - if so, add the start index to our list
if start.groupBegin {
start.threadGroups[start.groupNum].startIdx = i
// tempIndices[start.groupNum].startIdx = i
}
currentStates = append(currentStates, start)
// Main loop
for i < len(str) {
foundPath = false
zeroStates := make([]*State, 0)
// Keep taking zero-states, until there are no more left to take
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
zeroStates, isZero := takeZeroState(currentStates, numGroups, i)
tempStates = append(tempStates, zeroStates...)
num_appended := 0
for isZero == true {
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
tempStates, num_appended = unique_append(tempStates, zeroStates...)
if num_appended == 0 { // Break if we haven't appended any more unique values
break
}
}
currentStates, _ = unique_append(currentStates, tempStates...)
tempStates = nil
// Take any transitions corresponding to current character
numStatesMatched := 0 // The number of states which had at least 1 match for this round
assertionFailed := false // Whether or not an assertion failed for this round
lastStateInList := false // Whether or not a last state was in our list of states
var lastStatePtr *State = nil // Pointer to the last-state, if it was found
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
for _, state := range currentStates {
matches, numMatches := state.matchesFor(str, i)
if numMatches > 0 {
numStatesMatched++
tempStates = append(tempStates, matches...)
foundPath = true
for _, m := range matches {
if m.threadGroups == nil {
m.threadGroups = newMatch(numGroups + 1)
}
copy(m.threadGroups, state.threadGroups)
}
}
if numMatches < 0 {
assertionFailed = true
}
if state.isLast {
if state.isLookaround() {
lastLookaroundInList = true
}
lastStateInList = true
lastStatePtr = state
}
}
if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
// If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
// state. The explanation below is my attempt to explain this behavior.
// If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
//
// One of the states in our list was a last state and a lookaround. In this case, we
// don't abort upon failure of the assertion, because we have found
// another path to a final state.
// Even if the last state _was_ an assertion, we can use the previously
// saved indices to find a match.
if lastLookaroundInList {
break
} else {
if i == startingFrom {
i++
}
return false, []Group{}, i
}
}
// Check if we can find a state in our list that is:
// a. A last-state
// b. Empty
// c. Doesn't assert anything
for _, s := range currentStates {
if s.isLast && s.isEmpty && s.assert == NONE {
lastStatePtr = s
lastStateInList = true
}
}
if lastStateInList { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
for j := 1; j < numGroups+1; j++ {
tempIndices[j] = lastStatePtr.threadGroups[j]
}
endIdx = i
tempIndices[0] = Group{startIdx, endIdx}
}
// Check if we can find a zero-length match
if foundPath == false {
if ok, _, _ := zeroMatchPossible(str, i, numGroups, currentStates...); ok {
if tempIndices[0].isValid() == false {
tempIndices[0] = Group{startIdx, startIdx}
}
}
// If we haven't moved in the string, increment the counter by 1
// to ensure we don't keep trying the same string over and over.
// if i == startingFrom {
startIdx++
// i++
// }
if tempIndices.numValidGroups() > 0 && tempIndices[0].isValid() {
if tempIndices[0].startIdx == tempIndices[0].endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
return true, tempIndices, tempIndices[0].endIdx + 1
} else {
return true, tempIndices, tempIndices[0].endIdx
}
}
return false, []Group{}, startIdx
}
currentStates = make([]*State, len(tempStates))
copy(currentStates, tempStates)
tempStates = nil
i++
}
// End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
// This is the exact same algorithm used inside the loop, so I should probably put it in a function.
zeroStates, isZero := takeZeroState(currentStates, numGroups, i)
tempStates = append(tempStates, zeroStates...)
num_appended := 0 // Number of unique states addded to tempStates
for isZero == true {
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
tempStates, num_appended = unique_append(tempStates, zeroStates...)
if num_appended == 0 { // Break if we haven't appended any more unique values
break
}
}
currentStates = append(currentStates, tempStates...)
tempStates = nil
for _, state := range currentStates {
2 months ago
// Only add the match if the start index is in bounds. If the state has an assertion,
// make sure the assertion checks out.
if state.isLast && startIdx < len(str) {
if state.assert == NONE || state.checkAssertion(str, i) {
for j := 1; j < numGroups+1; j++ {
tempIndices[j] = state.threadGroups[j]
}
2 months ago
endIdx = i
tempIndices[0] = Group{startIdx, endIdx}
2 months ago
}
}
}
if tempIndices.numValidGroups() > 0 {
if tempIndices[0].startIdx == tempIndices[0].endIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
return true, tempIndices, tempIndices[0].endIdx + 1
} else {
return true, tempIndices, tempIndices[0].endIdx
}
}
if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
startIdx++
}
return false, []Group{}, startIdx
}