First commit
commit
82b33f3c9a
@ -0,0 +1,9 @@
|
||||
.DEFAULT_GOAL := build
|
||||
.PHONY: fmt vet build
|
||||
|
||||
fmt:
|
||||
go fmt ./...
|
||||
vet: fmt
|
||||
go vet ./...
|
||||
build: vet
|
||||
go build ./...
|
@ -0,0 +1,167 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"slices"
|
||||
)
|
||||
|
||||
const CONCAT rune = '~'
|
||||
const UNION int = 0
|
||||
|
||||
func isOperator(c rune) bool {
|
||||
if c == '*' || c == '|' || c == CONCAT {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
/* priority returns the priority of the given operator */
|
||||
func priority(op rune) int {
|
||||
precedence := []rune{'|', CONCAT, '*'}
|
||||
return slices.Index(precedence, op)
|
||||
}
|
||||
|
||||
/*
|
||||
shuntingYard applies the Shunting-Yard algorithm
|
||||
|
||||
to convert the given infix expression to postfix. This makes
|
||||
it easier to parse the algorithm when doing Thompson.
|
||||
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
|
||||
*/
|
||||
func shuntingYard(re string) string {
|
||||
re_postfix := make([]rune, 0)
|
||||
re_runes := []rune(re)
|
||||
/* Add concatenation operators */
|
||||
for i := 0; i < len(re_runes); i++ {
|
||||
re_postfix = append(re_postfix, re_runes[i])
|
||||
if re_runes[i] != '(' && re_runes[i] != '|' {
|
||||
if i < len(re_runes)-1 {
|
||||
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != ')' {
|
||||
re_postfix = append(re_postfix, CONCAT)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fmt.Println(string(re_postfix))
|
||||
|
||||
opStack := make([]rune, 0) // Operator stack
|
||||
outQueue := make([]rune, 0) // Output queue
|
||||
|
||||
// Actual algorithm
|
||||
for _, c := range re_postfix {
|
||||
/* Two cases:
|
||||
1. Current character is alphanumeric - send to output queue
|
||||
2. Current character is operator - do the following:
|
||||
a. If current character has greater priority than top of opStack, push to opStack.
|
||||
b. If not, keep popping from opStack (and appending to outQueue) until:
|
||||
i. opStack is empty, OR
|
||||
ii. current character has greater priority than top of opStack
|
||||
3. If current character is '(', push to opStack
|
||||
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
|
||||
*/
|
||||
if isAlphaNum(c) {
|
||||
outQueue = append(outQueue, c)
|
||||
}
|
||||
if isOperator(c) {
|
||||
if len(opStack) == 0 {
|
||||
opStack = append(opStack, c)
|
||||
} else {
|
||||
if priority(c) > priority(peek(opStack)) { // 2a
|
||||
opStack = append(opStack, c)
|
||||
} else {
|
||||
for len(opStack) > 0 && priority(c) <= priority(peek(opStack)) { // 2b
|
||||
to_append := pop(&opStack)
|
||||
outQueue = append(outQueue, to_append)
|
||||
}
|
||||
opStack = append(opStack, c)
|
||||
}
|
||||
}
|
||||
}
|
||||
if c == '(' {
|
||||
opStack = append(opStack, c)
|
||||
}
|
||||
if c == ')' {
|
||||
for peek(opStack) != '(' {
|
||||
to_append := pop(&opStack)
|
||||
outQueue = append(outQueue, to_append)
|
||||
}
|
||||
_ = pop(&opStack) // Get rid of opening parantheses
|
||||
}
|
||||
}
|
||||
|
||||
// Pop all remaining operators (and append to outQueue)
|
||||
for len(opStack) > 0 {
|
||||
to_append := pop(&opStack)
|
||||
outQueue = append(outQueue, to_append)
|
||||
}
|
||||
|
||||
return string(outQueue)
|
||||
}
|
||||
|
||||
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
|
||||
// Returns start state.
|
||||
func thompson(re string) State {
|
||||
nfa := make([]State, 0) // Stack of states
|
||||
for _, c := range re {
|
||||
if isAlphaNum(c) {
|
||||
state := State{}
|
||||
state.transitions = make(map[int]*State)
|
||||
state.content = int(c)
|
||||
state.output = make([]*State, 0)
|
||||
state.output = append(state.output, &state)
|
||||
state.isEmpty = false
|
||||
nfa = append(nfa, state)
|
||||
}
|
||||
// Must be an operator if it isn't alphanumeric
|
||||
switch c {
|
||||
case CONCAT:
|
||||
s2 := pop(&nfa)
|
||||
s1 := pop(&nfa)
|
||||
for i := range s1.output {
|
||||
s1.output[i].transitions[s2.content] = &s2
|
||||
}
|
||||
s1.output = s2.output
|
||||
nfa = append(nfa, s1)
|
||||
case '*':
|
||||
s1 := pop(&nfa)
|
||||
for i := range s1.output {
|
||||
s1.output[i].transitions[s1.content] = &s1
|
||||
}
|
||||
nfa = append(nfa, s1)
|
||||
case '|':
|
||||
s1 := pop(&nfa)
|
||||
s2 := pop(&nfa)
|
||||
s3 := State{}
|
||||
s3.transitions = make(map[int]*State)
|
||||
s3.output = append(s3.output, &s1, &s2)
|
||||
s3.transitions[s1.content] = &s1
|
||||
s3.transitions[s2.content] = &s2
|
||||
s3.content = UNION
|
||||
s3.isEmpty = true
|
||||
|
||||
nfa = append(nfa, s3)
|
||||
}
|
||||
}
|
||||
if len(nfa) != 1 {
|
||||
panic("ERROR: Invalid Regex.")
|
||||
}
|
||||
|
||||
verifyLastStates(nfa)
|
||||
|
||||
return nfa[0]
|
||||
|
||||
}
|
||||
|
||||
func main() {
|
||||
var re string
|
||||
// fmt.Scanln(&re)
|
||||
re = "a(b|c)*d"
|
||||
re_postfix := shuntingYard(re)
|
||||
fmt.Println(re_postfix)
|
||||
start := thompson(re_postfix)
|
||||
|
||||
assert(len(start.transitions) == 1)
|
||||
assert(len(start.transitions[UNION].transitions) == 2)
|
||||
|
||||
}
|
@ -0,0 +1,15 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"unicode"
|
||||
)
|
||||
|
||||
func isAlphaNum(c rune) bool {
|
||||
return unicode.IsLetter(c) || unicode.IsNumber(c)
|
||||
}
|
||||
|
||||
func assert(cond bool) {
|
||||
if cond != true {
|
||||
panic("Assertion Failed")
|
||||
}
|
||||
}
|
@ -0,0 +1,38 @@
|
||||
package main
|
||||
|
||||
const EPSILON int = 0
|
||||
|
||||
type State struct {
|
||||
content int // Contents of current state
|
||||
isEmpty bool // If it is empty - Union operator states will be empty
|
||||
isLast bool // If it is the last state (acept state)
|
||||
output []*State // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
|
||||
transitions map[int]*State // Transitions to different states (can be associated with an int, representing content of destination state)
|
||||
}
|
||||
|
||||
type NFA struct {
|
||||
start State
|
||||
outputs []State
|
||||
}
|
||||
|
||||
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
|
||||
func verifyLastStatesHelper(state *State, visited map[*State]bool) {
|
||||
if len(state.transitions) == 0 {
|
||||
state.isLast = true
|
||||
return
|
||||
}
|
||||
if visited[state] == true {
|
||||
return
|
||||
}
|
||||
visited[state] = true
|
||||
for k := range state.transitions {
|
||||
if state.transitions[k] != state {
|
||||
verifyLastStatesHelper(state.transitions[k], visited)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// verifyLastStates penables the 'isLast' flag for the leaf nodes (last states)
|
||||
func verifyLastStates(start []State) {
|
||||
verifyLastStatesHelper(&start[0], make(map[*State]bool))
|
||||
}
|
@ -0,0 +1,12 @@
|
||||
package main
|
||||
|
||||
// Helper functions for slices, to make them behave more like stacks
|
||||
func peek[T any](s []T) T {
|
||||
return s[len(s)-1]
|
||||
}
|
||||
|
||||
func pop[T any](sp *[]T) T {
|
||||
to_return := (*sp)[len(*sp)-1]
|
||||
*sp = (*sp)[:len(*sp)-1]
|
||||
return to_return
|
||||
}
|
Loading…
Reference in New Issue