Made shuntingYard return an error instead of panicking, moved it and thompson to compile.go

master
Aadhavan Srinivasan 2 weeks ago
parent 72263509d3
commit ddbcb309b0

@ -0,0 +1,574 @@
package main
import (
"fmt"
"slices"
"strconv"
"unicode"
)
/*
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
The primary benefit of this is getting rid of parentheses.
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
An error can be returned for a multitude of reasons - the reason is specified in the error string.
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
*/
func shuntingYard(re string) ([]postfixNode, error) {
re_postfix := make([]rune, 0)
// Convert the string to a slice of runes to allow iteration through it
re_runes_orig := []rune(re) // This is the rune slice before the first parsing loop (which detects and replaces numeric ranges)
re_runes := make([]rune, 0)
// Check for numeric range. If we are at the start of a numeric range,
// skip to end and construct the equivalent regex for the range.
// The reason this is outside the loop below, is that it actually modifies
// the given regex (we 'cut' the numeric range and 'paste' an equivalent regex).
// It also makes the overall parsing easier, since I don't have to worry about the numeric range
// anymore.
// Eventually, I might be able to add it into the main parsing loop, to reduce the time
// complexity.
// A numeric range has the syntax: <num1-num2>. Ir matches all numbers in this range.
//
// Also check for non-capturing groups. The LPAREN of a non-capturing group looks like this: '(?:'
// I take this out, and put in a special character - NONCAPLPAREN_CHAR.
for i := 0; i < len(re_runes_orig); i++ {
c := re_runes_orig[i]
if c == '<' && (i == 0 || (re_runes_orig[i-1] != '\\' && re_runes_orig[i-1] != '?')) {
i++ // Step over opening angle bracket
tmpStr := ""
hyphenFound := false
for i < len(re_runes_orig) && re_runes_orig[i] != '>' {
if !unicode.IsDigit(re_runes_orig[i]) {
if re_runes_orig[i] != '-' || (hyphenFound) {
return nil, fmt.Errorf("Invalid numeric range.")
}
}
if re_runes_orig[i] == '-' {
hyphenFound = true
}
tmpStr += string(re_runes_orig[i])
i++
}
// End of string reached and last character doesn't close the range
if i == len(re_runes_orig) && re_runes_orig[len(re_runes_orig)-1] != '>' {
return nil, fmt.Errorf("Numeric range not closed.")
}
if len(tmpStr) == 0 {
return nil, fmt.Errorf("Empty numeric range.")
}
// Closing bracket will be skipped when the loop variable increments
var rangeStart int
var rangeEnd int
fmt.Sscanf(tmpStr, "%d-%d", &rangeStart, &rangeEnd)
regex := range2regex(rangeStart, rangeEnd)
re_runes = append(re_runes, []rune(regex)...)
} else if c == '(' && i < len(re_runes_orig)-2 && re_runes_orig[i+1] == '?' && re_runes_orig[i+2] == ':' {
re_runes = append(re_runes, NONCAPLPAREN_CHAR)
i += 2
} else {
re_runes = append(re_runes, c)
}
}
/* Add concatenation operators.
Only add a concatenation operator between two characters if both the following conditions are met:
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
a. This makes sense, because these operators can't be _concatenated_ with anything else.
2. The second character isn't a 'closing operator' - one that applies to something before it
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
Caveats:
1. Don't mess with anything inside brackets - character class
2. Don't mess with anything inside braces - numeric repetition
3. Don't mess with any lookarounds.
*/
i := 0
for i < len(re_runes) {
re_postfix = append(re_postfix, re_runes[i])
if re_runes[i] == '[' && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped. Inside this block, the only task is to expand character ranges into their constituent characters.
re_postfix[len(re_postfix)-1] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
toAppend := make([]rune, 0) // Holds all the runes in the current character class
if i < len(re_runes)-1 && re_runes[i+1] == '^' { // Inverting class - match everything NOT in brackets
re_postfix = append(re_postfix, '^')
i++ // Skip opening bracket and caret
}
if i < len(re_runes)-1 && re_runes[i+1] == ']' { // Nothing inside brackets - panic.
return nil, fmt.Errorf("Empty character class.")
}
for re_runes[i] != ']' {
i++ // Skip all characters inside brackets
// TODO: Check for escaped characters
// Check ahead for character range
if i < len(re_runes)-2 && re_runes[i+1] == '-' {
rangeStart := re_runes[i]
rangeEnd := re_runes[i+2]
if int(rangeEnd) < int(rangeStart) {
return nil, fmt.Errorf("Range is out of order.")
}
for i := rangeStart; i <= rangeEnd; i++ {
toAppend = append(toAppend, i)
}
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
continue
}
toAppend = append(toAppend, re_runes[i])
}
// Replace the last character (which should have been ']', with RBRACKET
toAppend[len(toAppend)-1] = RBRACKET
re_postfix = append(re_postfix, toAppend...)
}
if i < len(re_runes) && re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
i++ // Skip opening brace
for i < len(re_runes) && re_runes[i] != '}' {
re_postfix = append(re_postfix, re_runes[i])
i++
}
if i == len(re_runes) {
return nil, fmt.Errorf("Invalid numeric specifier.")
}
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
}
if i < len(re_runes)-3 && string(re_runes[i+1:i+4]) == "(?:" { // Non-capturing lparen
re_postfix = append(re_postfix, NONCAPLPAREN_CHAR)
i += 3
}
if i < len(re_runes) && re_runes[i] == '(' && (i == 0 || re_runes[i-1] != '\\') && (i < len(re_runes)-2 && re_runes[i+1] == '?' && slices.Contains([]rune{'=', '!', '<'}, re_runes[i+2])) { // Unescaped open parentheses followed by question mark then '<', '!' or '=' => lokaround. Don't mess with it.
i++ // Step inside
if i == len(re_runes)-1 || (re_runes[i+1] != '=' && re_runes[i+1] != '!' && re_runes[i+1] != '<') {
return nil, fmt.Errorf("Invalid regex. Lookaround intended?")
}
re_postfix = append(re_postfix, re_runes[i])
i++
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_runes) {
return nil, fmt.Errorf("Unclosed lookaround.")
}
if re_runes[i] == '(' {
numOpenParens++
}
if re_runes[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
re_postfix = append(re_postfix, re_runes[i])
i++
}
continue
}
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != NONCAPLPAREN_CHAR && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
if i < len(re_runes)-1 {
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
re_postfix = append(re_postfix, CONCAT)
}
}
}
i++
}
opStack := make([]rune, 0) // Operator stack
outQueue := make([]postfixNode, 0) // Output queue
// Actual algorithm
numOpenParens := 0 // Number of open parentheses
for i := 0; i < len(re_postfix); i++ {
/* Two cases:
1. Current character is alphanumeric - send to output queue
2. Current character is operator - do the following:
a. If current character has greater priority than top of opStack, push to opStack.
b. If not, keep popping from opStack (and appending to outQueue) until:
i. opStack is empty, OR
ii. current character has greater priority than top of opStack
3. If current character is '(' or NONCAPLPAREN_CHAR, push to opStack
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
*/
c := re_postfix[i]
if isNormalChar(c) {
if caseInsensitiveFlag != nil && *caseInsensitiveFlag {
outQueue = append(outQueue, newPostfixNode(allCases(c)...))
} else {
outQueue = append(outQueue, newPostfixNode(c))
}
continue
}
// Escape character
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
return nil, fmt.Errorf("ERROR: Backslash with no escape character.")
}
i++
outQueue = append(outQueue, newEscapedNode(re_postfix[i]))
continue // Escaped character will automatically be skipped when loop variable increments
}
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
outQueue = append(outQueue, newPostfixDotNode())
continue
}
if c == '^' { // Start-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
if c == '$' { // End-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
// Check if we're at the start of a lookaround
if c == '(' && i < len(re_postfix)-1 && re_postfix[i+1] == '?' {
i += 2 // Skip opening paren and question mark
regex := "" // Stores lookaround regex
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_postfix) {
return nil, fmt.Errorf("Unclosed lookaround.")
}
if re_postfix[i] == '(' {
numOpenParens++
}
if re_postfix[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
regex += string(re_postfix[i])
i++
}
if len(regex) <= 1 { // Nothing in regex - panic
return nil, fmt.Errorf("Invalid lookaround. (too short?)")
}
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
// Now we should filter that out.
toAppend := postfixNode{nodetype: ASSERTION, startReps: 1, endReps: 1}
if regex[0] == '<' { // Lookbehind
toAppend.lookaroundDir = LOOKBEHIND
regex = regex[1:]
} else if regex[0] == '=' || regex[0] == '!' {
toAppend.lookaroundDir = LOOKAHEAD
} else {
return nil, fmt.Errorf("Invalid lookaround.")
}
// Positive or negative
if regex[0] == '=' { // Positive
toAppend.lookaroundSign = POSITIVE
toAppend.contents = []rune(regex[1:])
} else if regex[0] == '!' { // Negative
toAppend.lookaroundSign = NEGATIVE
toAppend.contents = []rune(regex[1:])
} else {
return nil, fmt.Errorf("Invalid lookaround.")
}
outQueue = append(outQueue, toAppend)
continue
}
if isOperator(c) {
if len(opStack) == 0 {
opStack = append(opStack, c)
} else {
topStack, err := peek(opStack)
if err != nil {
return nil, fmt.Errorf("Operator without operand.")
}
if priority(c) > priority(topStack) { // 2a
opStack = append(opStack, c)
} else {
for priority(c) <= priority(topStack) { // 2b
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
topStack, _ = peek(opStack)
}
opStack = append(opStack, c)
}
}
}
if c == LBRACKET { // Used for character classes
i++ // Step forward so we can look at the character class
var invertMatch bool
if re_postfix[i] == '^' {
invertMatch = true
i++
}
chars := make([]rune, 0) // List of characters - used only for character classes
for i < len(re_postfix) {
if re_postfix[i] == RBRACKET {
break
}
chars = append(chars, re_postfix[i])
i++
}
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
return nil, fmt.Errorf("Opening bracket without closing bracket.")
}
if !invertMatch {
outQueue = append(outQueue, newPostfixCharNode(chars...))
} else {
// Invert match - create an allChars postfixNode, then add the given states to its 'except' list.
toAdd := newPostfixDotNode()
toAdd.except = chars
outQueue = append(outQueue, toAdd)
}
continue
}
if c == '{' {
i++ // Skip opening brace
// Three possibilities:
// 1. Single number - {5}
// 2. Range - {3,5}
// 3. Start with no end, {3,}
startRange := make([]rune, 0)
startRangeNum := 0
endRange := make([]rune, 0)
endRangeNum := 0
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
startRange = append(startRange, re_postfix[i])
i++
}
if len(startRange) == 0 { // {} is not valid, neither is {,5}
return nil, fmt.Errorf("Invalid numeric specifier.")
}
if i == len(re_postfix) {
return nil, fmt.Errorf("Brace not closed.")
}
startRangeNum, err := strconv.Atoi(string(startRange))
if err != nil {
panic(err)
}
if re_postfix[i] == '}' { // Case 1 above
endRangeNum = startRangeNum
} else {
if re_postfix[i] != ',' {
return nil, fmt.Errorf("Invalid numeric specifier.")
}
i++ // Skip comma
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
endRange = append(endRange, re_postfix[i])
i++
}
if i == len(re_postfix) {
return nil, fmt.Errorf("Brace not closed.")
}
if re_postfix[i] != '}' {
return nil, fmt.Errorf("Invalid numeric specifier.")
}
if len(endRange) == 0 { // Case 3 above
endRangeNum = INFINITE_REPS
} else { // Case 2 above
var err error
endRangeNum, err = strconv.Atoi(string(endRange))
if err != nil {
panic(err)
}
}
}
idx := len(outQueue) - 1
// Get the last added node
if idx < 0 || outQueue[idx].nodetype == LPAREN {
return nil, fmt.Errorf("Numeric specifier with no content.")
}
outQueue[idx].startReps = startRangeNum
outQueue[idx].endReps = endRangeNum
}
if c == '(' || c == NONCAPLPAREN_CHAR {
opStack = append(opStack, c)
if c == '(' { // We only push _capturing_ group parentheses to outQueue
outQueue = append(outQueue, newPostfixNode(c))
}
numOpenParens++
}
if c == ')' {
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Panic if we reach the end of the stack.
var val rune
var err error
for val, err = peek(opStack); val != '(' && val != NONCAPLPAREN_CHAR; val, err = peek(opStack) {
if err != nil {
return nil, fmt.Errorf("Imbalanced parantheses.")
}
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
}
_ = mustPop(&opStack) // Get rid of opening parentheses
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
outQueue = append(outQueue, newPostfixNode(')')) // Add closing parentheses
}
numOpenParens--
}
}
// Pop all remaining operators (and append to outQueue)
for len(opStack) > 0 {
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
}
if numOpenParens != 0 {
return nil, fmt.Errorf("Imbalanced parantheses.")
}
return outQueue, nil
}
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
// Returns start state and number of groups in regex.
func thompson(re []postfixNode) (*State, int) {
nfa := make([]*State, 0) // Stack of states
numGroups := 0 // Number of capturing groups
for _, c := range re {
if c.nodetype == CHARACTER || c.nodetype == ASSERTION {
state := State{}
state.transitions = make(map[int][]*State)
if c.allChars {
state.allChars = true
if len(c.except) != 0 {
state.except = append([]rune{}, c.except...)
}
}
state.content = rune2Contents(c.contents)
state.output = make([]*State, 0)
state.output = append(state.output, &state)
state.isEmpty = false
if c.nodetype == ASSERTION {
state.isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
state.content = newContents(EPSILON) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
if c.lookaroundDir == 0 || c.lookaroundSign == 0 {
switch c.contents[0] {
case '^':
state.assert = SOS
case '$':
state.assert = EOS
case 'b':
state.assert = WBOUND
case 'B':
state.assert = NONWBOUND
}
} else { // Lookaround
state.lookaroundRegex = string(c.contents)
if c.lookaroundDir == LOOKAHEAD {
if c.lookaroundSign == POSITIVE {
state.assert = PLA
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLA
}
}
if c.lookaroundDir == LOOKBEHIND {
if c.lookaroundSign == POSITIVE {
state.assert = PLB
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLB
}
}
tmpRe := shuntingYard(state.lookaroundRegex)
var numGroupsLookaround int
state.lookaroundNFA, numGroupsLookaround = thompson(tmpRe)
state.lookaroundNumCaptureGroups = numGroupsLookaround
}
}
nfa = append(nfa, &state)
}
if c.nodetype == LPAREN || c.nodetype == RPAREN {
s := &State{}
s.assert = NONE
s.content = newContents(EPSILON)
s.isEmpty = true
s.output = make([]*State, 0)
s.output = append(s.output, s)
s.transitions = make(map[int][]*State)
// LPAREN nodes are just added normally
if c.nodetype == LPAREN {
numGroups++
s.groupBegin = true
s.groupNum = numGroups
nfa = append(nfa, s)
continue
}
// For RPAREN nodes, I assume that the last two nodes in the list are an LPAREN,
// and then some other node.
// These three nodes (LPAREN, the middle node and RPAREN) are extracted together, concatenated
// and added back in.
if c.nodetype == RPAREN {
s.groupEnd = true
middleNode := mustPop(&nfa)
lparenNode := mustPop(&nfa)
s.groupNum = lparenNode.groupNum
tmp := concatenate(lparenNode, middleNode)
to_add := concatenate(tmp, s)
nfa = append(nfa, to_add)
}
}
// Must be an operator if it isn't a character
switch c.nodetype {
case CONCATENATE:
s2 := mustPop(&nfa)
s1 := mustPop(&nfa)
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case KLEENE: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
s1 := mustPop(&nfa)
stateToAdd := kleene(*s1)
nfa = append(nfa, stateToAdd)
case PLUS: // a+ is equivalent to aa*
s1 := mustPop(&nfa)
s2 := kleene(*s1)
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case QUESTION: // ab? is equivalent to a(b|)
s1 := mustPop(&nfa)
s2 := question(s1)
nfa = append(nfa, s2)
case PIPE:
s1 := mustPop(&nfa)
s2 := mustPop(&nfa)
s3 := alternate(s1, s2)
nfa = append(nfa, s3)
}
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
if c.endReps != -1 && c.endReps < c.startReps {
panic("ERROR: Numeric specifier - start greater than end.")
}
state := mustPop(&nfa)
var stateToAdd *State = nil
// Take advantage of the following facts:
// a{5} == aaaaa
// a{3,5} == aaaa?a?
// a{5,} == aaaaa+
// Nov. 3 2024 - I have two choices on how I want to implement numeric
// specifiers.
// a. Encode the logic while creating the states. I will have to create a function
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
// not work). Creating this function might be a lot of work.
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
// at this point, I can leave thompson untouched.
for i := 0; i < c.startReps; i++ { // Case 1
stateToAdd = concatenate(stateToAdd, cloneState(state))
}
if c.endReps == INFINITE_REPS { // Case 3
s2 := kleene(*state)
stateToAdd = concatenate(stateToAdd, s2)
} else { // Case 2
for i := c.startReps; i < c.endReps; i++ {
stateToAdd = concatenate(stateToAdd, question(state))
}
}
nfa = append(nfa, stateToAdd)
}
}
if len(nfa) != 1 {
panic("ERROR: Invalid Regex.")
}
verifyLastStates(nfa)
return nfa[0], numGroups
}

@ -7,8 +7,6 @@ import (
"io" "io"
"os" "os"
"slices" "slices"
"strconv"
"unicode"
"github.com/fatih/color" "github.com/fatih/color"
) )
@ -31,571 +29,6 @@ func priority(op rune) int {
return slices.Index(precedence, op) return slices.Index(precedence, op)
} }
/*
The Shunting-Yard algorithm is used to convert the given infix (regeular) expression to postfix.
The primary benefit of this is getting rid of parentheses.
It also inserts explicit concatenation operators to make parsing easier in Thompson's algorithm.
See: https://blog.cernera.me/converting-regular-expressions-to-postfix-notation-with-the-shunting-yard-algorithm/
*/
func shuntingYard(re string) []postfixNode {
re_postfix := make([]rune, 0)
// Convert the string to a slice of runes to allow iteration through it
re_runes_orig := []rune(re) // This is the rune slice before the first parsing loop (which detects and replaces numeric ranges)
re_runes := make([]rune, 0)
// Check for numeric range. If we are at the start of a numeric range,
// skip to end and construct the equivalent regex for the range.
// The reason this is outside the loop below, is that it actually modifies
// the given regex (we 'cut' the numeric range and 'paste' an equivalent regex).
// It also makes the overall parsing easier, since I don't have to worry about the numeric range
// anymore.
// Eventually, I might be able to add it into the main parsing loop, to reduce the time
// complexity.
// A numeric range has the syntax: <num1-num2>. Ir matches all numbers in this range.
//
// Also check for non-capturing groups. The LPAREN of a non-capturing group looks like this: '(?:'
// I take this out, and put in a special character - NONCAPLPAREN_CHAR.
for i := 0; i < len(re_runes_orig); i++ {
c := re_runes_orig[i]
if c == '<' && (i == 0 || (re_runes_orig[i-1] != '\\' && re_runes_orig[i-1] != '?')) {
i++ // Step over opening angle bracket
tmpStr := ""
hyphenFound := false
for i < len(re_runes_orig) && re_runes_orig[i] != '>' {
if !unicode.IsDigit(re_runes_orig[i]) {
if re_runes_orig[i] != '-' || (hyphenFound) {
panic("ERROR: Invalid numeric range.")
}
}
if re_runes_orig[i] == '-' {
hyphenFound = true
}
tmpStr += string(re_runes_orig[i])
i++
}
// End of string reached and last character doesn't close the range
if i == len(re_runes_orig) && re_runes_orig[len(re_runes_orig)-1] != '>' {
panic("ERROR: Numeric range not closed.")
}
if len(tmpStr) == 0 {
panic("ERROR: Empty numeric range.")
}
// Closing bracket will be skipped when the loop variable increments
var rangeStart int
var rangeEnd int
fmt.Sscanf(tmpStr, "%d-%d", &rangeStart, &rangeEnd)
regex := range2regex(rangeStart, rangeEnd)
re_runes = append(re_runes, []rune(regex)...)
} else if c == '(' && i < len(re_runes_orig)-2 && re_runes_orig[i+1] == '?' && re_runes_orig[i+2] == ':' {
re_runes = append(re_runes, NONCAPLPAREN_CHAR)
i += 2
} else {
re_runes = append(re_runes, c)
}
}
/* Add concatenation operators.
Only add a concatenation operator between two characters if both the following conditions are met:
1. The first character isn't an opening parantheses or alteration operator (or an escape character)
a. This makes sense, because these operators can't be _concatenated_ with anything else.
2. The second character isn't a 'closing operator' - one that applies to something before it
a. Again, these operators can'be concatenated _to_. They can, however, be concatenated _from_.
Caveats:
1. Don't mess with anything inside brackets - character class
2. Don't mess with anything inside braces - numeric repetition
3. Don't mess with any lookarounds.
*/
i := 0
for i < len(re_runes) {
re_postfix = append(re_postfix, re_runes[i])
if re_runes[i] == '[' && (i == 0 || re_runes[i-1] != '\\') { // We do not touch things inside brackets, unless they are escaped. Inside this block, the only task is to expand character ranges into their constituent characters.
re_postfix[len(re_postfix)-1] = LBRACKET // Replace the '[' character with LBRACKET. This allows for easier parsing of all characters (including opening and closing brackets) within the character class
toAppend := make([]rune, 0) // Holds all the runes in the current character class
if i < len(re_runes)-1 && re_runes[i+1] == '^' { // Inverting class - match everything NOT in brackets
re_postfix = append(re_postfix, '^')
i++ // Skip opening bracket and caret
}
if i < len(re_runes)-1 && re_runes[i+1] == ']' { // Nothing inside brackets - panic.
panic("Empty character class.")
}
for re_runes[i] != ']' {
i++ // Skip all characters inside brackets
// TODO: Check for escaped characters
// Check ahead for character range
if i < len(re_runes)-2 && re_runes[i+1] == '-' {
rangeStart := re_runes[i]
rangeEnd := re_runes[i+2]
if int(rangeEnd) < int(rangeStart) {
panic("Range is out of order.")
}
for i := rangeStart; i <= rangeEnd; i++ {
toAppend = append(toAppend, i)
}
i += 2 // Skip start and hyphen (end will automatically be skipped on next iteration of loop)
continue
}
toAppend = append(toAppend, re_runes[i])
}
// Replace the last character (which should have been ']', with RBRACKET
toAppend[len(toAppend)-1] = RBRACKET
re_postfix = append(re_postfix, toAppend...)
}
if i < len(re_runes) && re_runes[i] == '{' && (i > 0 && re_runes[i-1] != '\\') { // We don't touch things inside braces, either
i++ // Skip opening brace
for i < len(re_runes) && re_runes[i] != '}' {
re_postfix = append(re_postfix, re_runes[i])
i++
}
if i == len(re_runes) {
panic("Invalid numeric specifier.")
}
re_postfix = append(re_postfix, re_runes[i]) // Append closing brace
}
if i < len(re_runes)-3 && string(re_runes[i+1:i+4]) == "(?:" { // Non-capturing lparen
re_postfix = append(re_postfix, NONCAPLPAREN_CHAR)
i += 3
}
if i < len(re_runes) && re_runes[i] == '(' && (i == 0 || re_runes[i-1] != '\\') && (i < len(re_runes)-2 && re_runes[i+1] == '?' && slices.Contains([]rune{'=', '!', '<'}, re_runes[i+2])) { // Unescaped open parentheses followed by question mark then '<', '!' or '=' => lokaround. Don't mess with it.
i++ // Step inside
if i == len(re_runes)-1 || (re_runes[i+1] != '=' && re_runes[i+1] != '!' && re_runes[i+1] != '<') {
panic("Invalid regex. Lookaround intended?")
}
re_postfix = append(re_postfix, re_runes[i])
i++
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_runes) {
panic("Unclosed lookaround.")
}
if re_runes[i] == '(' {
numOpenParens++
}
if re_runes[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
re_postfix = append(re_postfix, re_runes[i])
i++
}
continue
}
if i < len(re_runes) && (re_runes[i] != '(' && re_runes[i] != NONCAPLPAREN_CHAR && re_runes[i] != '|' && re_runes[i] != '\\') || (i > 0 && re_runes[i-1] == '\\') { // Every character should be concatenated if it is escaped
if i < len(re_runes)-1 {
if re_runes[i+1] != '|' && re_runes[i+1] != '*' && re_runes[i+1] != '+' && re_runes[i+1] != '?' && re_runes[i+1] != ')' && re_runes[i+1] != '{' {
re_postfix = append(re_postfix, CONCAT)
}
}
}
i++
}
opStack := make([]rune, 0) // Operator stack
outQueue := make([]postfixNode, 0) // Output queue
// Actual algorithm
numOpenParens := 0 // Number of open parentheses
for i := 0; i < len(re_postfix); i++ {
/* Two cases:
1. Current character is alphanumeric - send to output queue
2. Current character is operator - do the following:
a. If current character has greater priority than top of opStack, push to opStack.
b. If not, keep popping from opStack (and appending to outQueue) until:
i. opStack is empty, OR
ii. current character has greater priority than top of opStack
3. If current character is '(' or NONCAPLPAREN_CHAR, push to opStack
4. If current character is ')', pop from opStack (and append to outQueue) until '(' is found. Discard parantheses.
5. If current character is '[', find all the characters until ']', then create a postfixNode containing all these contents. Add this node to outQueue.
6. If current character is '{', find the appropriate numeric specifier (range start, range end). Apply the range to the postfixNode at the end of outQueue.
*/
c := re_postfix[i]
if isNormalChar(c) {
if caseInsensitiveFlag != nil && *caseInsensitiveFlag {
outQueue = append(outQueue, newPostfixNode(allCases(c)...))
} else {
outQueue = append(outQueue, newPostfixNode(c))
}
continue
}
// Escape character
if c == '\\' { // Escape character - invert special and non-special characters eg. \( is treated as a literal parentheses, \b is treated as word boundary
if i == len(re_postfix)-1 { // End of string - panic, because backslash is an escape character (something needs to come after it)
panic("ERROR: Backslash with no escape character.")
}
i++
outQueue = append(outQueue, newEscapedNode(re_postfix[i]))
continue // Escaped character will automatically be skipped when loop variable increments
}
if c == '.' { // Dot metacharacter - represents 'any' character, but I am only adding Unicode 0020-007E
outQueue = append(outQueue, newPostfixDotNode())
continue
}
if c == '^' { // Start-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
if c == '$' { // End-of-string assertion
outQueue = append(outQueue, newPostfixNode(c))
}
// Check if we're at the start of a lookaround
if c == '(' && i < len(re_postfix)-1 && re_postfix[i+1] == '?' {
i += 2 // Skip opening paren and question mark
regex := "" // Stores lookaround regex
numOpenParens := 1
for numOpenParens != 0 {
if i >= len(re_postfix) {
panic("Unclosed lookaround.")
}
if re_postfix[i] == '(' {
numOpenParens++
}
if re_postfix[i] == ')' {
numOpenParens--
if numOpenParens == 0 {
break
}
}
regex += string(re_postfix[i])
i++
}
if len(regex) <= 1 { // Nothing in regex - panic
panic("Invalid lookaround. (too short?)")
}
// 'regex' should now contain the lookaround regex, plus the characters at the start (which indicate pos/neg, ahead/behind)
// Now we should filter that out.
toAppend := postfixNode{nodetype: ASSERTION, startReps: 1, endReps: 1}
if regex[0] == '<' { // Lookbehind
toAppend.lookaroundDir = LOOKBEHIND
regex = regex[1:]
} else if regex[0] == '=' || regex[0] == '!' {
toAppend.lookaroundDir = LOOKAHEAD
} else {
panic("Invalid lookaround.")
}
// Positive or negative
if regex[0] == '=' { // Positive
toAppend.lookaroundSign = POSITIVE
toAppend.contents = []rune(regex[1:])
} else if regex[0] == '!' { // Negative
toAppend.lookaroundSign = NEGATIVE
toAppend.contents = []rune(regex[1:])
} else {
panic("Invalid lookaround.")
}
outQueue = append(outQueue, toAppend)
continue
}
if isOperator(c) {
if len(opStack) == 0 {
opStack = append(opStack, c)
} else {
topStack, err := peek(opStack)
if err != nil {
panic("ERROR: Operator without operand.")
}
if priority(c) > priority(topStack) { // 2a
opStack = append(opStack, c)
} else {
for priority(c) <= priority(topStack) { // 2b
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
topStack, _ = peek(opStack)
}
opStack = append(opStack, c)
}
}
}
if c == LBRACKET { // Used for character classes
i++ // Step forward so we can look at the character class
var invertMatch bool
if re_postfix[i] == '^' {
invertMatch = true
i++
}
chars := make([]rune, 0) // List of characters - used only for character classes
for i < len(re_postfix) {
if re_postfix[i] == RBRACKET {
break
}
chars = append(chars, re_postfix[i])
i++
}
if i == len(re_postfix) { // We have reached the end of the string, so we didn't encounter a closing brakcet. Panic.
panic("ERROR: Opening bracket without closing bracket.")
}
if !invertMatch {
outQueue = append(outQueue, newPostfixCharNode(chars...))
} else {
// Invert match - create an allChars postfixNode, then add the given states to its 'except' list.
toAdd := newPostfixDotNode()
toAdd.except = chars
outQueue = append(outQueue, toAdd)
}
continue
}
if c == '{' {
i++ // Skip opening brace
// Three possibilities:
// 1. Single number - {5}
// 2. Range - {3,5}
// 3. Start with no end, {3,}
startRange := make([]rune, 0)
startRangeNum := 0
endRange := make([]rune, 0)
endRangeNum := 0
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
startRange = append(startRange, re_postfix[i])
i++
}
if len(startRange) == 0 { // {} is not valid, neither is {,5}
panic("ERROR: Invalid numeric specifier.")
}
if i == len(re_postfix) {
panic("ERROR: Brace not closed.")
}
startRangeNum, err := strconv.Atoi(string(startRange))
if err != nil {
panic(err)
}
if re_postfix[i] == '}' { // Case 1 above
endRangeNum = startRangeNum
} else {
if re_postfix[i] != ',' {
panic("ERROR: Invalid numeric specifier.")
}
i++ // Skip comma
for i < len(re_postfix) && unicode.IsDigit(re_postfix[i]) {
endRange = append(endRange, re_postfix[i])
i++
}
if i == len(re_postfix) {
panic("ERROR: Brace not closed.")
}
if re_postfix[i] != '}' {
panic("ERROR: Invalid numeric specifier.")
}
if len(endRange) == 0 { // Case 3 above
endRangeNum = INFINITE_REPS
} else { // Case 2 above
var err error
endRangeNum, err = strconv.Atoi(string(endRange))
if err != nil {
panic(err)
}
}
}
idx := len(outQueue) - 1
// Get the last added node
if idx < 0 || outQueue[idx].nodetype == LPAREN {
panic("Numeric specifier with no content.")
}
outQueue[idx].startReps = startRangeNum
outQueue[idx].endReps = endRangeNum
}
if c == '(' || c == NONCAPLPAREN_CHAR {
opStack = append(opStack, c)
if c == '(' { // We only push _capturing_ group parentheses to outQueue
outQueue = append(outQueue, newPostfixNode(c))
}
numOpenParens++
}
if c == ')' {
// Keep popping from opStack until we encounter an opening parantheses or a NONCAPLPAREN_CHAR. Panic if we reach the end of the stack.
var val rune
var err error
for val, err = peek(opStack); val != '(' && val != NONCAPLPAREN_CHAR; val, err = peek(opStack) {
if err != nil {
panic("ERROR: Imbalanced parantheses.")
}
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
}
_ = mustPop(&opStack) // Get rid of opening parentheses
if val == '(' { // Whatever was inside the parentheses was a _capturing_ group, so we append the closing parentheses as well
outQueue = append(outQueue, newPostfixNode(')')) // Add closing parentheses
}
numOpenParens--
}
}
// Pop all remaining operators (and append to outQueue)
for len(opStack) > 0 {
to_append := mustPop(&opStack)
outQueue = append(outQueue, newPostfixNode(to_append))
}
if numOpenParens != 0 {
panic("ERROR: Imbalanced parantheses.")
}
return outQueue
}
// Thompson's algorithm. Constructs Finite-State Automaton from given string.
// Returns start state and number of groups in regex.
func thompson(re []postfixNode) (*State, int) {
nfa := make([]*State, 0) // Stack of states
numGroups := 0 // Number of capturing groups
for _, c := range re {
if c.nodetype == CHARACTER || c.nodetype == ASSERTION {
state := State{}
state.transitions = make(map[int][]*State)
if c.allChars {
state.allChars = true
if len(c.except) != 0 {
state.except = append([]rune{}, c.except...)
}
}
state.content = rune2Contents(c.contents)
state.output = make([]*State, 0)
state.output = append(state.output, &state)
state.isEmpty = false
if c.nodetype == ASSERTION {
state.isEmpty = true // This is a little weird. A lookaround has the 'isEmpty' flag set, even though it _isn't_ empty (the contents are the regex). But, there's so much error-checking that relies on this flag that it's better to keep it this way.
state.content = newContents(EPSILON) // Ideally, an assertion shouldn't have any content, since it doesn't say anything about the content of string
if c.lookaroundDir == 0 || c.lookaroundSign == 0 {
switch c.contents[0] {
case '^':
state.assert = SOS
case '$':
state.assert = EOS
case 'b':
state.assert = WBOUND
case 'B':
state.assert = NONWBOUND
}
} else { // Lookaround
state.lookaroundRegex = string(c.contents)
if c.lookaroundDir == LOOKAHEAD {
if c.lookaroundSign == POSITIVE {
state.assert = PLA
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLA
}
}
if c.lookaroundDir == LOOKBEHIND {
if c.lookaroundSign == POSITIVE {
state.assert = PLB
}
if c.lookaroundSign == NEGATIVE {
state.assert = NLB
}
}
tmpRe := shuntingYard(state.lookaroundRegex)
var numGroupsLookaround int
state.lookaroundNFA, numGroupsLookaround = thompson(tmpRe)
state.lookaroundNumCaptureGroups = numGroupsLookaround
}
}
nfa = append(nfa, &state)
}
if c.nodetype == LPAREN || c.nodetype == RPAREN {
s := &State{}
s.assert = NONE
s.content = newContents(EPSILON)
s.isEmpty = true
s.output = make([]*State, 0)
s.output = append(s.output, s)
s.transitions = make(map[int][]*State)
// LPAREN nodes are just added normally
if c.nodetype == LPAREN {
numGroups++
s.groupBegin = true
s.groupNum = numGroups
nfa = append(nfa, s)
continue
}
// For RPAREN nodes, I assume that the last two nodes in the list are an LPAREN,
// and then some other node.
// These three nodes (LPAREN, the middle node and RPAREN) are extracted together, concatenated
// and added back in.
if c.nodetype == RPAREN {
s.groupEnd = true
middleNode := mustPop(&nfa)
lparenNode := mustPop(&nfa)
s.groupNum = lparenNode.groupNum
tmp := concatenate(lparenNode, middleNode)
to_add := concatenate(tmp, s)
nfa = append(nfa, to_add)
}
}
// Must be an operator if it isn't a character
switch c.nodetype {
case CONCATENATE:
s2 := mustPop(&nfa)
s1 := mustPop(&nfa)
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case KLEENE: // Create a 0-state, concat the popped state after it, concat the 0-state after the popped state
s1 := mustPop(&nfa)
stateToAdd := kleene(*s1)
nfa = append(nfa, stateToAdd)
case PLUS: // a+ is equivalent to aa*
s1 := mustPop(&nfa)
s2 := kleene(*s1)
s1 = concatenate(s1, s2)
nfa = append(nfa, s1)
case QUESTION: // ab? is equivalent to a(b|)
s1 := mustPop(&nfa)
s2 := question(s1)
nfa = append(nfa, s2)
case PIPE:
s1 := mustPop(&nfa)
s2 := mustPop(&nfa)
s3 := alternate(s1, s2)
nfa = append(nfa, s3)
}
if c.startReps != 1 || c.endReps != 1 { // Must have a numeric specifier attached to it
if c.endReps != -1 && c.endReps < c.startReps {
panic("ERROR: Numeric specifier - start greater than end.")
}
state := mustPop(&nfa)
var stateToAdd *State = nil
// Take advantage of the following facts:
// a{5} == aaaaa
// a{3,5} == aaaa?a?
// a{5,} == aaaaa+
// Nov. 3 2024 - I have two choices on how I want to implement numeric
// specifiers.
// a. Encode the logic while creating the states. I will have to create a function
// that creates a deep-copy of a given state / NFA, so that I can concatenate them to
// each other (concatenating them with the 'concatenate' method - which takes addresses - does
// not work). Creating this function might be a lot of work.
// b. Encode the logic while parsing the string (shunting-yard). If I can expand the numeric specifier
// at this point, I can leave thompson untouched.
for i := 0; i < c.startReps; i++ { // Case 1
stateToAdd = concatenate(stateToAdd, cloneState(state))
}
if c.endReps == INFINITE_REPS { // Case 3
s2 := kleene(*state)
stateToAdd = concatenate(stateToAdd, s2)
} else { // Case 2
for i := c.startReps; i < c.endReps; i++ {
stateToAdd = concatenate(stateToAdd, question(state))
}
}
nfa = append(nfa, stateToAdd)
}
}
if len(nfa) != 1 {
panic("ERROR: Invalid Regex.")
}
verifyLastStates(nfa)
return nfa[0], numGroups
}
func main() { func main() {
invertFlag := flag.Bool("v", false, "Invert match.") invertFlag := flag.Bool("v", false, "Invert match.")
// This flag has two 'modes': // This flag has two 'modes':

Loading…
Cancel
Save