Compare commits
89 Commits
00570f07fe
...
v0.1.0
Author | SHA1 | Date | |
---|---|---|---|
662527c478 | |||
d1958f289c | |||
15ee49f42e | |||
b60ded4136 | |||
9fbb99f86c | |||
af15904f3b | |||
d522f50b50 | |||
fb47e082eb | |||
1f5a363539 | |||
9e12f9dcb3 | |||
47f88c817f | |||
835d495990 | |||
76e0170cb9 | |||
d172a58258 | |||
7231169270 | |||
e546f01c20 | |||
b7467a00f1 | |||
c6ad4caa0d | |||
6334435b83 | |||
78fb5606dd | |||
eddd2ae700 | |||
c577064977 | |||
d4e3942d27 | |||
f15a5cae34 | |||
62ca1a872a | |||
99230b49de | |||
22ead83625 | |||
3604486a9b | |||
052de55826 | |||
d2ad0d95a8 | |||
ccf3b3b299 | |||
1d4f695f8f | |||
8534174ea1 | |||
ed4ffde64e | |||
fbc9bea9fb | |||
cca8c7cda2 | |||
858e535fba | |||
7c62ba6bfd | |||
d4e8cb74fd | |||
3ce611d121 | |||
e0253dfaf3 | |||
753e973d82 | |||
5563a70568 | |||
de0d7345a8 | |||
ad273b0c68 | |||
e167cdb2cb | |||
1fd48ae614 | |||
09812956ac | |||
fbc9dfcc95 | |||
bc32e0cb76 | |||
ad0f7d0178 | |||
4e597f8eb1 | |||
ef476e8875 | |||
7e6b02632f | |||
f94e3f2e71 | |||
b129d83c3f | |||
43aa7b5876 | |||
9a3bfca313 | |||
b6ab54f6dd | |||
6a96c98d04 | |||
3cfc2a6854 | |||
5d7a02e796 | |||
a46d2f4546 | |||
c88ebd1aa5 | |||
fd102292c6 | |||
6d692d0dfc | |||
7c4538a259 | |||
2a9ae0b68a | |||
783ae2ad10 | |||
b5e6bc112c | |||
206fea34cd | |||
fcdb23524a | |||
ac936659b6 | |||
e6dba9fdcf | |||
30779a446b | |||
f629a0f08f | |||
6869cd00a2 | |||
02bc8f30a2 | |||
ac05bceda3 | |||
037ac75ea6 | |||
e9d4e857cf | |||
b685d2fd5f | |||
8eda5055ff | |||
45b6566b2c | |||
e22822e619 | |||
692de2a32b | |||
0d19664044 | |||
1bfb09b6c7 | |||
b0b8bf23af |
4
Makefile
4
Makefile
@@ -6,8 +6,8 @@ fmt:
|
||||
vet: fmt
|
||||
go vet ./...
|
||||
buildLib: vet
|
||||
go build -gcflags="-N -l" ./...
|
||||
go build -gcflags="all=-N -l" ./...
|
||||
buildCmd: buildLib
|
||||
go build -C cmd/ -o re ./...
|
||||
go build -C cmd/ -gcflags="all=-N -l" -o re ./...
|
||||
test: buildCmd
|
||||
go test -v ./...
|
||||
|
@@ -121,12 +121,12 @@ func main() {
|
||||
}
|
||||
matchIndices := make([]reg.Match, 0)
|
||||
if matchNumFlagEnabled {
|
||||
tmp, err := reg.FindNthMatch(regComp, test_str, *matchNum)
|
||||
tmp, err := regComp.FindNthMatch(test_str, *matchNum)
|
||||
if err == nil {
|
||||
matchIndices = append(matchIndices, tmp)
|
||||
}
|
||||
} else {
|
||||
matchIndices = reg.FindAllMatches(regComp, test_str)
|
||||
matchIndices = regComp.FindAllSubmatch(test_str)
|
||||
}
|
||||
|
||||
if *printMatchesFlag {
|
||||
@@ -137,7 +137,7 @@ func main() {
|
||||
fmt.Fprintf(out, "Line %d:\n", lineNum)
|
||||
}
|
||||
for _, m := range matchIndices {
|
||||
fmt.Fprintf(out, "%s\n", m.ToString())
|
||||
fmt.Fprintf(out, "%s\n", m.String())
|
||||
}
|
||||
err := out.Flush()
|
||||
if err != nil {
|
||||
|
@@ -16,7 +16,6 @@ func (s *uniq_arr[T]) add(vals ...T) {
|
||||
s.backingMap[item] = struct{}{}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (s uniq_arr[T]) contains(val T) bool {
|
||||
|
@@ -12,10 +12,27 @@ var notDotChars []rune
|
||||
|
||||
// A Reg represents the result of compiling a regular expression. It contains
|
||||
// the startState of the NFA representation of the regex, and the number of capturing
|
||||
// groups in the regex.
|
||||
// groups in the regex. It also contains the expression string.
|
||||
type Reg struct {
|
||||
start *nfaState
|
||||
numGroups int
|
||||
start *nfaState
|
||||
numGroups int
|
||||
str string
|
||||
preferLongest bool
|
||||
}
|
||||
|
||||
// NumSubexp returns the number of sub-expressions in the given [Reg]. This is equivalent
|
||||
// to the number of capturing groups.
|
||||
func (re Reg) NumSubexp() int {
|
||||
return re.numGroups
|
||||
}
|
||||
|
||||
// String returns the string used to compile the expression.
|
||||
func (re Reg) String() string {
|
||||
return re.str
|
||||
}
|
||||
|
||||
func (re *Reg) Longest() {
|
||||
re.preferLongest = true
|
||||
}
|
||||
|
||||
const concatRune rune = 0xF0001
|
||||
@@ -810,13 +827,12 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
// In these cases, we will return an NFA with 1 state, with an assertion that is always true.
|
||||
if len(re) == 0 {
|
||||
start := zeroLengthMatchState()
|
||||
nfa = append(nfa, &start)
|
||||
nfa = append(nfa, start)
|
||||
}
|
||||
|
||||
for _, c := range re {
|
||||
if c.nodetype == characterNode || c.nodetype == assertionNode {
|
||||
stateToAdd := nfaState{}
|
||||
stateToAdd.transitions = make(map[int][]*nfaState)
|
||||
if c.allChars {
|
||||
stateToAdd.allChars = true
|
||||
if len(c.except) != 0 {
|
||||
@@ -928,7 +944,6 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
s.isEmpty = true
|
||||
s.output = make([]*nfaState, 0)
|
||||
s.output = append(s.output, s)
|
||||
s.transitions = make(map[int][]*nfaState)
|
||||
// LPAREN nodes are just added normally
|
||||
if c.nodetype == lparenNode {
|
||||
numGroups++
|
||||
@@ -943,7 +958,9 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
// and added back in.
|
||||
// If the middle node doesn't exist (ie. something like '()' ), that's fine, I just connect the LPAREN
|
||||
// and RPAREN nodes.
|
||||
// If neither node exists, that's a problem so I return an error.
|
||||
// If the middle node exists but is itself the start of a group, then that _must_ be the opening paren for
|
||||
// the closing paren that I'm on. I put the third node back (because it isn't involved in the capturing group), then
|
||||
// I concatenate those two and add them. If neither node exists, that's a problem so I return an error.
|
||||
if c.nodetype == rparenNode {
|
||||
s.groupEnd = true
|
||||
middleNode, err1 := pop(&nfa)
|
||||
@@ -958,6 +975,11 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
s.groupNum = lparenNode.groupNum
|
||||
to_add := concatenate(lparenNode, s)
|
||||
nfa = append(nfa, to_add)
|
||||
} else if middleNode.groupBegin && middleNode.numTransitions() == 0 { // The middle node is a lone lparen - something like '(())', and I'm looking at the first rparen
|
||||
nfa = append(nfa, lparenNode) // I shouldn't have popped this out, because it is not involved in the current capturing group
|
||||
s.groupNum = middleNode.groupNum // In this case, the 'middle' node is actually an lparen
|
||||
to_add := concatenate(middleNode, s)
|
||||
nfa = append(nfa, to_add)
|
||||
} else {
|
||||
// At this point, we assume all three nodes are valid ('lparenNode', 'middleNode' and 's')
|
||||
if lparenNode.groupBegin {
|
||||
@@ -976,7 +998,8 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
if c.nodetype == charclassNode { // A Character class consists of all the nodes in it, alternated
|
||||
// Map the list of nodes to a list of states, each state containing the contents of a specific node
|
||||
states := funcMap(c.nodeContents, func(node postfixNode) *nfaState {
|
||||
s := newState()
|
||||
s := &nfaState{}
|
||||
s.output = append(s.output, s)
|
||||
nodeContents := node.contents
|
||||
if caseInsensitive {
|
||||
nodeContents = slices.Concat(funcMap(nodeContents, func(r rune) []rune {
|
||||
@@ -990,7 +1013,7 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
return n.contents
|
||||
})...)
|
||||
}
|
||||
return &s
|
||||
return s
|
||||
})
|
||||
// Reduce the list of states down to a single state by alternating them
|
||||
toAdd := funcReduce(states, func(s1 *nfaState, s2 *nfaState) *nfaState {
|
||||
@@ -1017,14 +1040,14 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
if err != nil {
|
||||
return Reg{}, fmt.Errorf("error applying kleene star")
|
||||
}
|
||||
stateToAdd, err := kleene(*s1)
|
||||
stateToAdd, err := kleene(s1)
|
||||
if err != nil {
|
||||
return Reg{}, err
|
||||
}
|
||||
nfa = append(nfa, stateToAdd)
|
||||
case plusNode: // a+ is equivalent to aa*
|
||||
s1 := mustPop(&nfa)
|
||||
s2, err := kleene(*s1)
|
||||
s2, err := kleene(s1)
|
||||
if err != nil {
|
||||
return Reg{}, err
|
||||
}
|
||||
@@ -1035,7 +1058,10 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
if err != nil {
|
||||
return Reg{}, fmt.Errorf("error applying question operator")
|
||||
}
|
||||
s2 := question(s1)
|
||||
s2, err := question(s1)
|
||||
if err != nil {
|
||||
return Reg{}, err
|
||||
}
|
||||
nfa = append(nfa, s2)
|
||||
case pipeNode:
|
||||
// A pipe operator doesn't actually need either operand to be present. If an operand isn't present,
|
||||
@@ -1046,21 +1072,21 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
// '|a'
|
||||
// '^a|'
|
||||
// '^|a'
|
||||
s1, err1 := pop(&nfa)
|
||||
s2, err2 := pop(&nfa)
|
||||
if err2 != nil || (s2.groupBegin && len(s2.transitions) == 0) { // Doesn't exist, or its just an LPAREN
|
||||
s2, err1 := pop(&nfa)
|
||||
s1, err2 := pop(&nfa)
|
||||
if err2 != nil || (s2.groupBegin && s2.numTransitions() == 0) { // Doesn't exist, or its just an LPAREN
|
||||
if err2 == nil { // Roundabout way of saying that this node existed, but it was an LPAREN, so we append it back
|
||||
nfa = append(nfa, s2)
|
||||
}
|
||||
tmp := zeroLengthMatchState()
|
||||
s2 = &tmp
|
||||
s2 = tmp
|
||||
}
|
||||
if err1 != nil || (s1.groupBegin && len(s1.transitions) == 0) { // Doesn't exist, or its just an LPAREN
|
||||
if err1 != nil || (s1.groupBegin && s1.numTransitions() == 0) { // Doesn't exist, or its just an LPAREN
|
||||
if err1 == nil { // See above for explanation
|
||||
nfa = append(nfa, s1)
|
||||
}
|
||||
tmp := zeroLengthMatchState()
|
||||
s1 = &tmp
|
||||
s1 = tmp
|
||||
}
|
||||
s3 := alternate(s1, s2)
|
||||
nfa = append(nfa, s3)
|
||||
@@ -1087,14 +1113,18 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
stateToAdd = concatenate(stateToAdd, cloneState(poppedState))
|
||||
}
|
||||
if c.endReps == infinite_reps { // Case 3
|
||||
s2, err := kleene(*poppedState)
|
||||
s2, err := kleene(poppedState)
|
||||
if err != nil {
|
||||
return Reg{}, err
|
||||
}
|
||||
stateToAdd = concatenate(stateToAdd, s2)
|
||||
} else { // Case 2
|
||||
for i := c.startReps; i < c.endReps; i++ {
|
||||
stateToAdd = concatenate(stateToAdd, question(cloneState(poppedState)))
|
||||
tmp, err := question(cloneState(poppedState))
|
||||
if err != nil {
|
||||
return Reg{}, fmt.Errorf("error processing bounded repetition")
|
||||
}
|
||||
stateToAdd = concatenate(stateToAdd, tmp)
|
||||
}
|
||||
}
|
||||
nfa = append(nfa, stateToAdd)
|
||||
@@ -1104,16 +1134,21 @@ func thompson(re []postfixNode) (Reg, error) {
|
||||
return Reg{}, fmt.Errorf("invalid regex")
|
||||
}
|
||||
|
||||
verifyLastStates(nfa)
|
||||
lastState := newState()
|
||||
lastState.isLast = true
|
||||
|
||||
return Reg{nfa[0], numGroups}, nil
|
||||
concatenate(nfa[0], &lastState)
|
||||
|
||||
// The string is empty here, because we add it in Compile()
|
||||
return Reg{nfa[0], numGroups, "", false}, nil
|
||||
|
||||
}
|
||||
|
||||
// Compiles the given regular expression into a Reg type, suitable for use with the
|
||||
// matching functions. The second return value is non-nil if a compilation error has
|
||||
// occured. As such, the error value must be checked before using the Reg returned by this function.
|
||||
// The second parameter is an optional list of flags, passed to the parsing function shuntingYard.
|
||||
// Compile compiles the given regular expression into a [Reg].
|
||||
//
|
||||
// An error value != nil indicates that the regex was invalid; the error message should provide
|
||||
// detailed information on the nature of the error.
|
||||
// The second parameter is a sequence of zero or more [ReFlag] values, that modify the behavior of the regex.
|
||||
func Compile(re string, flags ...ReFlag) (Reg, error) {
|
||||
nodes, err := shuntingYard(re, flags...)
|
||||
if err != nil {
|
||||
@@ -1123,5 +1158,15 @@ func Compile(re string, flags ...ReFlag) (Reg, error) {
|
||||
if err != nil {
|
||||
return Reg{}, fmt.Errorf("error compiling regex: %w", err)
|
||||
}
|
||||
reg.str = re
|
||||
return reg, nil
|
||||
}
|
||||
|
||||
// MustCompile panics if Compile returns an error. They are identical in all other respects.
|
||||
func MustCompile(re string, flags ...ReFlag) Reg {
|
||||
reg, err := Compile(re, flags...)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
return reg
|
||||
}
|
||||
|
96
regex/doc.go
96
regex/doc.go
@@ -4,6 +4,8 @@ Package regex implements regular expression search, using a custom non-bracktrac
|
||||
The engine relies completely on UTF-8 codepoints. As such, it is capable of matching characters
|
||||
from other languages, emojis and symbols.
|
||||
|
||||
The API and regex syntax are largely compatible with that of the stdlib's [regexp], with a few key differences (see 'Key Differences with regexp').
|
||||
|
||||
The full syntax is specified below.
|
||||
|
||||
# Syntax
|
||||
@@ -55,8 +57,8 @@ POSIX classes (inside normal character classes):
|
||||
Composition:
|
||||
|
||||
def Match d, followed by e, followed by f
|
||||
x|y Match x or y (prefer longer one)
|
||||
xy|z Match xy or z
|
||||
x|y Match x or y (prefer x)
|
||||
xy|z Match xy or z (prefer xy)
|
||||
|
||||
Repitition (always greedy, preferring more):
|
||||
|
||||
@@ -84,9 +86,93 @@ Assertions:
|
||||
\b Match at a word boundary (a word character followed by a non-word character, or vice-versa)
|
||||
\B Match at a non-word boundary (a word character followed by a word character, or vice-versa)
|
||||
|
||||
# Flags
|
||||
Lookarounds:
|
||||
|
||||
Flags are used to change the behavior of the engine. None of them are enabled by default. They are passed as an [ReFlag] slice to [Compile].
|
||||
The list of flags, and their purpose, is provided in the type definition.
|
||||
x(?=y) Positive lookahead - Match x if followed by y
|
||||
x(?!y) Negative lookahead - Match x if NOT followed by y
|
||||
(?<=x)y Positive lookbehind - Match y if preceded by x
|
||||
(?<!x)y Negative lookbehind - Match y if NOT preceded by x
|
||||
|
||||
Numeric ranges:
|
||||
|
||||
<x-y> Match any number from x to y (inclusive) (x and y must be positive numbers)
|
||||
\<x Match a literal '<' followed by x
|
||||
|
||||
# Key Differences with regexp
|
||||
|
||||
The engine and the API differ from [regexp] in a few ways, some of them very subtle.
|
||||
The key differences are mentioned below.
|
||||
|
||||
1. Greediness:
|
||||
|
||||
This engine does not support non-greedy operators. All operators are always greedy in nature, and will try
|
||||
to match as much as they can, while still allowing for a successful match. For example, given the regex:
|
||||
|
||||
y*y
|
||||
|
||||
The engine will match as many 'y's as it can, while still allowing the trailing 'y' to be matched.
|
||||
|
||||
Another, more subtle example is the following regex:
|
||||
|
||||
x|xx
|
||||
|
||||
While the stdlib implementation (and most other engines) will prefer matching the first item of the alternation,
|
||||
this engine will go for the longest possible match, regardless of the order of the alternation. Although this
|
||||
strays from the convention, it results in a nice rule-of-thumb - the engine is ALWAYS greedy.
|
||||
|
||||
The stdlib implementation has a function [regexp.Regexp.Longest] which makes future searches prefer the longest match.
|
||||
That is the default (and unchangable) behavior in this engine.
|
||||
|
||||
2. Byte-slices and runes:
|
||||
|
||||
My engine does not support byte-slices. When a matching function receives a string, it converts it into a
|
||||
rune-slice to iterate through it. While this has some space overhead, the convenience of built-in unicode
|
||||
support made the tradeoff worth it.
|
||||
|
||||
3. Return values
|
||||
|
||||
Rather than using primitives for return values, my engine defines two types that are used as return
|
||||
values: a [Group] represents a capturing group, and a [Match] represents a list of groups.
|
||||
|
||||
[regexp] specifies a regular expression that gives a list of all the matching functions that it supports. The
|
||||
equivalent expression for this engine is shown below. Note that 'Index' is the default.
|
||||
|
||||
Find(All)?(String)?(Submatch)?
|
||||
|
||||
[Reg.Find] returns the index of the leftmost match in the string.
|
||||
|
||||
If a function contains 'All' it returns all matches instead of just the leftmost one.
|
||||
|
||||
If a function contains 'String' it returns the matched text, rather than the index in the string.
|
||||
|
||||
If a function contains 'Submatch' it returns the match, including all submatches found by
|
||||
capturing groups.
|
||||
|
||||
The term '0-group' is used to refer to the 0th capturing group of a match (which is the entire match).
|
||||
Given the following regex:
|
||||
|
||||
x(y)
|
||||
|
||||
and the input string:
|
||||
|
||||
xyz
|
||||
|
||||
The 0th group would contain 'xy' and the 1st group would contain 'y'. Any matching function without 'Submatch' in its name
|
||||
returns the 0-group.
|
||||
|
||||
# Feature Differences
|
||||
|
||||
The following features from [regexp] are (currently) NOT supported:
|
||||
1. Named capturing groups
|
||||
2. Non-greedy operators
|
||||
3. Unicode character classes
|
||||
4. Embedded flags (flags are passed as arguments to [Compile])
|
||||
5. Literal text with \Q ... \E
|
||||
|
||||
The following features are not available in [regexp], but are supported in my engine:
|
||||
1. Lookarounds
|
||||
2. Numeric ranges
|
||||
|
||||
I hope to shorten the first list, and expand the second.
|
||||
*/
|
||||
package regex
|
||||
|
91
regex/example_test.go
Normal file
91
regex/example_test.go
Normal file
@@ -0,0 +1,91 @@
|
||||
package regex_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"gitea.twomorecents.org/Rockingcool/kleingrep/regex"
|
||||
)
|
||||
|
||||
func ExampleReg_Find() {
|
||||
regexStr := "b|a"
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
|
||||
match, _ := regexComp.Find("banana")
|
||||
fmt.Println(match.String())
|
||||
|
||||
// Output: 0 1
|
||||
}
|
||||
|
||||
func ExampleReg_FindAll() {
|
||||
regexStr := "b|a"
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
|
||||
matches := regexComp.FindAll("banana")
|
||||
for _, group := range matches {
|
||||
fmt.Println(group.String())
|
||||
}
|
||||
|
||||
// Output: 0 1
|
||||
// 1 2
|
||||
// 3 4
|
||||
// 5 6
|
||||
}
|
||||
|
||||
func ExampleReg_FindString() {
|
||||
regexStr := `\d+`
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
|
||||
matchStr := regexComp.FindString("The year of our lord, 2025")
|
||||
fmt.Println(matchStr)
|
||||
// Output: 2025
|
||||
}
|
||||
|
||||
func ExampleReg_FindSubmatch() {
|
||||
regexStr := `(\d)\.(\d)(\d)`
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
|
||||
match, _ := regexComp.FindSubmatch("3.14")
|
||||
fmt.Println(match[0])
|
||||
fmt.Println(match[1])
|
||||
fmt.Println(match[2])
|
||||
// Output: 0 4
|
||||
// 0 1
|
||||
// 2 3
|
||||
}
|
||||
|
||||
func ExampleReg_Expand() {
|
||||
inputStr := `option1: value1
|
||||
option2: value2`
|
||||
regexStr := `(\w+): (\w+)`
|
||||
templateStr := "$1 = $2\n"
|
||||
regexComp := regex.MustCompile(regexStr, regex.RE_MULTILINE)
|
||||
result := ""
|
||||
for _, submatches := range regexComp.FindAllSubmatch(inputStr) {
|
||||
result = regexComp.Expand(result, templateStr, inputStr, submatches)
|
||||
}
|
||||
fmt.Println(result)
|
||||
// Output: option1 = value1
|
||||
// option2 = value2
|
||||
|
||||
}
|
||||
|
||||
func ExampleReg_LiteralPrefix() {
|
||||
regexStr := `a(b|c)d*`
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
prefix, complete := regexComp.LiteralPrefix()
|
||||
fmt.Println(prefix)
|
||||
fmt.Println(complete)
|
||||
// Output: a
|
||||
// false
|
||||
}
|
||||
|
||||
func ExampleReg_Longest() {
|
||||
regexStr := `x|xx`
|
||||
inputStr := "xx"
|
||||
regexComp := regex.MustCompile(regexStr)
|
||||
fmt.Println(regexComp.FindString(inputStr))
|
||||
regexComp.Longest()
|
||||
fmt.Println(regexComp.FindString(inputStr))
|
||||
// Output: x
|
||||
// xx
|
||||
}
|
@@ -2,13 +2,20 @@ package regex
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"sort"
|
||||
"strconv"
|
||||
"unicode"
|
||||
)
|
||||
|
||||
// a Match stores a slice of all the capturing groups in a match.
|
||||
// A Match represents a match found by the regex in a given string.
|
||||
// It is represented as a list of groups, where the nth element contains
|
||||
// the contents of the nth capturing group. Note that the group may not be valid
|
||||
// (see [Group.IsValid]). The element at index 0 is known
|
||||
// as the 0-group, and represents the contents of the entire match.
|
||||
//
|
||||
// See [Reg.FindSubmatch] for an example.
|
||||
type Match []Group
|
||||
|
||||
// a Group represents a group. It contains the start index and end index of the match
|
||||
// a Group represents a capturing group. It contains the start and index of the group.
|
||||
type Group struct {
|
||||
StartIdx int
|
||||
EndIdx int
|
||||
@@ -23,151 +30,153 @@ func newMatch(size int) Match {
|
||||
return toRet
|
||||
}
|
||||
|
||||
// Returns the number of valid groups in the match
|
||||
func (m Match) numValidGroups() int {
|
||||
numValid := 0
|
||||
for _, g := range m {
|
||||
if g.StartIdx >= 0 && g.EndIdx >= 0 {
|
||||
numValid++
|
||||
}
|
||||
}
|
||||
return numValid
|
||||
}
|
||||
|
||||
// Returns a string containing the indices of all (valid) groups in the match
|
||||
func (m Match) ToString() string {
|
||||
func (m Match) String() string {
|
||||
var toRet string
|
||||
for i, g := range m {
|
||||
if g.isValid() {
|
||||
if g.IsValid() {
|
||||
toRet += fmt.Sprintf("Group %d\n", i)
|
||||
toRet += g.toString()
|
||||
toRet += g.String()
|
||||
toRet += "\n"
|
||||
}
|
||||
}
|
||||
return toRet
|
||||
}
|
||||
|
||||
// Converts the Group into a string representation:
|
||||
func (idx Group) toString() string {
|
||||
// String converts the Group into a string representation.
|
||||
func (idx Group) String() string {
|
||||
return fmt.Sprintf("%d\t%d", idx.StartIdx, idx.EndIdx)
|
||||
}
|
||||
|
||||
// Returns whether a group contains valid indices
|
||||
func (g Group) isValid() bool {
|
||||
// IsValid returns whether a group is valid (ie. whether it matched any text). It
|
||||
// simply ensures that both indices of the group are >= 0.
|
||||
func (g Group) IsValid() bool {
|
||||
return g.StartIdx >= 0 && g.EndIdx >= 0
|
||||
}
|
||||
|
||||
// takeZeroState takes the 0-state (if such a transition exists) for all states in the
|
||||
// given slice. It returns the resulting states. If any of the resulting states is a 0-state,
|
||||
// the second ret val is true.
|
||||
// If a state begins or ends a capturing group, its 'thread' is updated to contain the correct index.
|
||||
func takeZeroState(states []*nfaState, numGroups int, idx int) (rtv []*nfaState, isZero bool) {
|
||||
for _, state := range states {
|
||||
if len(state.transitions[epsilon]) > 0 {
|
||||
for _, s := range state.transitions[epsilon] {
|
||||
if s.threadGroups == nil {
|
||||
s.threadGroups = newMatch(numGroups + 1)
|
||||
}
|
||||
copy(s.threadGroups, state.threadGroups)
|
||||
if s.groupBegin {
|
||||
s.threadGroups[s.groupNum].StartIdx = idx
|
||||
// openParenGroups = append(openParenGroups, s.groupNum)
|
||||
}
|
||||
if s.groupEnd {
|
||||
s.threadGroups[s.groupNum].EndIdx = idx
|
||||
// closeParenGroups = append(closeParenGroups, s.groupNum)
|
||||
}
|
||||
}
|
||||
rtv = append(rtv, state.transitions[epsilon]...)
|
||||
}
|
||||
}
|
||||
for _, state := range rtv {
|
||||
if len(state.transitions[epsilon]) > 0 {
|
||||
return rtv, true
|
||||
}
|
||||
}
|
||||
return rtv, false
|
||||
// Simple function, makes it easier to map this over a list of matches
|
||||
func getZeroGroup(m Match) Group {
|
||||
return m[0]
|
||||
}
|
||||
|
||||
// zeroMatchPossible returns true if a zero-length match is possible
|
||||
// from any of the given states, given the string and our position in it.
|
||||
// It uses the same algorithm to find zero-states as the one inside the loop,
|
||||
// so I should probably put it in a function.
|
||||
func zeroMatchPossible(str []rune, idx int, numGroups int, states ...*nfaState) bool {
|
||||
zeroStates, isZero := takeZeroState(states, numGroups, idx)
|
||||
tempstates := make([]*nfaState, 0, len(zeroStates)+len(states))
|
||||
tempstates = append(tempstates, states...)
|
||||
tempstates = append(tempstates, zeroStates...)
|
||||
num_appended := 0 // number of unique states addded to tempstates
|
||||
for isZero == true {
|
||||
zeroStates, isZero = takeZeroState(tempstates, numGroups, idx)
|
||||
tempstates, num_appended = unique_append(tempstates, zeroStates...)
|
||||
if num_appended == 0 { // break if we haven't appended any more unique values
|
||||
break
|
||||
}
|
||||
}
|
||||
for _, state := range tempstates {
|
||||
if state.isEmpty && (state.assert == noneAssert || state.checkAssertion(str, idx)) && state.isLast {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
func copyThread(to *nfaState, from nfaState) {
|
||||
to.threadGroups = append([]Group{}, from.threadGroups...)
|
||||
}
|
||||
|
||||
// Prunes the slice by removing overlapping indices.
|
||||
func pruneIndices(indices []Match) []Match {
|
||||
// First, sort the slice by the start indices
|
||||
sort.Slice(indices, func(i, j int) bool {
|
||||
return indices[i][0].StartIdx < indices[j][0].StartIdx
|
||||
})
|
||||
toRet := make([]Match, 0, len(indices))
|
||||
current := indices[0]
|
||||
for _, idx := range indices[1:] {
|
||||
// idx doesn't overlap with current (starts after current ends), so add current to result
|
||||
// and update the current.
|
||||
if idx[0].StartIdx >= current[0].EndIdx {
|
||||
toRet = append(toRet, current)
|
||||
current = idx
|
||||
} else if idx[0].EndIdx > current[0].EndIdx {
|
||||
// idx overlaps, but it is longer, so update current
|
||||
current = idx
|
||||
}
|
||||
// Find returns the 0-group of the leftmost match of the regex in the given string.
|
||||
// An error value != nil indicates that no match was found.
|
||||
func (re Reg) Find(str string) (Group, error) {
|
||||
match, err := re.FindNthMatch(str, 1)
|
||||
if err != nil {
|
||||
return Group{}, fmt.Errorf("no matches found")
|
||||
}
|
||||
// Add last state
|
||||
toRet = append(toRet, current)
|
||||
return toRet
|
||||
return getZeroGroup(match), nil
|
||||
}
|
||||
|
||||
// FindString returns a _string_ containing the _text_ of the _leftmost_ match of
|
||||
// the regex, in the given string. The return value will be an empty string in two situations:
|
||||
// Match returns a boolean value, indicating whether the regex found a match in the given string.
|
||||
func (re Reg) Match(str string) bool {
|
||||
_, err := re.Find(str)
|
||||
return err == nil
|
||||
}
|
||||
|
||||
// CompileMatch compiles expr and returns true if str contains a match of the expression.
|
||||
// It is equivalent to [regexp.Match].
|
||||
// An optional list of flags may be provided (see [ReFlag]).
|
||||
// It returns an error (!= nil) if there was an error compiling the expression.
|
||||
func CompileMatch(expr string, str string, flags ...ReFlag) (bool, error) {
|
||||
re, err := Compile(expr, flags...)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
return re.Match(str), nil
|
||||
}
|
||||
|
||||
// FindAll returns a slice containing all the 0-groups of the regex in the given string.
|
||||
// A 0-group represents the match without any submatches.
|
||||
func (re Reg) FindAll(str string) []Group {
|
||||
indices := re.FindAllSubmatch(str)
|
||||
zeroGroups := funcMap(indices, getZeroGroup)
|
||||
return zeroGroups
|
||||
}
|
||||
|
||||
// FindString returns the text of the leftmost match of the regex in the given string.
|
||||
// The return value will be an empty string in two situations:
|
||||
// 1. No match was found
|
||||
// 2. The match was an empty string
|
||||
func FindString(regex Reg, str string) string {
|
||||
match, err := FindNthMatch(regex, str, 1)
|
||||
func (re Reg) FindString(str string) string {
|
||||
match, err := re.FindNthMatch(str, 1)
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
return str[match[0].StartIdx:match[0].EndIdx]
|
||||
zeroGroup := getZeroGroup(match)
|
||||
return str[zeroGroup.StartIdx:zeroGroup.EndIdx]
|
||||
}
|
||||
|
||||
// FindAllString is the 'all' version of FindString.
|
||||
// It returns a _slice of strings_ containing the _text_ of _all_ matches of
|
||||
// the regex, in the given string.
|
||||
//func FindAllString(regex Reg, str []string) []string {
|
||||
//
|
||||
//}
|
||||
// FindSubmatch returns the leftmost match of the regex in the given string, including
|
||||
// the submatches matched by capturing groups. The returned [Match] will always contain the same
|
||||
// number of groups. The validity of a group (whether or not it matched anything) can be determined with
|
||||
// [Group.IsValid], or by checking that both indices of the group are >= 0.
|
||||
// The second-return value is nil if no match was found.
|
||||
func (re Reg) FindSubmatch(str string) (Match, error) {
|
||||
match, err := re.FindNthMatch(str, 1)
|
||||
if err != nil {
|
||||
return Match{}, fmt.Errorf("no match found")
|
||||
} else {
|
||||
return match, nil
|
||||
}
|
||||
}
|
||||
|
||||
// FindNthMatch finds the 'n'th match of the regex represented by the given start-state, with
|
||||
// the given string.
|
||||
// FindStringSubmatch is the 'string' version of [FindSubmatch]. It returns a slice of strings,
|
||||
// where the string at index i contains the text matched by the i-th capturing group.
|
||||
// The 0-th index represents the entire match.
|
||||
// An empty string at index n could mean:
|
||||
// ,
|
||||
// 1. Group n did not find a match
|
||||
// 2. Group n found a zero-length match
|
||||
//
|
||||
// A return value of nil indicates no match.
|
||||
func (re Reg) FindStringSubmatch(str string) []string {
|
||||
matchStr := make([]string, re.numGroups+1)
|
||||
match, err := re.FindSubmatch(str)
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
nonEmptyMatchFound := false
|
||||
for i := range match {
|
||||
if match[i].IsValid() {
|
||||
matchStr[i] = str[match[i].StartIdx:match[i].EndIdx]
|
||||
nonEmptyMatchFound = true
|
||||
} else {
|
||||
matchStr[i] = ""
|
||||
}
|
||||
}
|
||||
if nonEmptyMatchFound == false {
|
||||
return nil
|
||||
}
|
||||
return matchStr
|
||||
}
|
||||
|
||||
// FindAllString is the 'all' version of [FindString].
|
||||
// It returns a slice of strings containing the text of all matches of
|
||||
// the regex in the given string.
|
||||
func (re Reg) FindAllString(str string) []string {
|
||||
zerogroups := re.FindAll(str)
|
||||
matchStrs := funcMap(zerogroups, func(g Group) string {
|
||||
return str[g.StartIdx:g.EndIdx]
|
||||
})
|
||||
return matchStrs
|
||||
}
|
||||
|
||||
// FindNthMatch return the 'n'th match of the regex in the given string.
|
||||
// It returns an error (!= nil) if there are fewer than 'n' matches in the string.
|
||||
func FindNthMatch(regex Reg, str string, n int) (Match, error) {
|
||||
func (re Reg) FindNthMatch(str string, n int) (Match, error) {
|
||||
idx := 0
|
||||
matchNum := 0
|
||||
str_runes := []rune(str)
|
||||
var matchFound bool
|
||||
var matchIdx Match
|
||||
for idx <= len(str_runes) {
|
||||
matchFound, matchIdx, idx = findAllMatchesHelper(regex.start, str_runes, idx, regex.numGroups)
|
||||
matchFound, matchIdx, idx = findAllSubmatchHelper(re.start, str_runes, idx, re.numGroups, re.preferLongest)
|
||||
if matchFound {
|
||||
matchNum++
|
||||
}
|
||||
@@ -179,237 +188,187 @@ func FindNthMatch(regex Reg, str string, n int) (Match, error) {
|
||||
return nil, fmt.Errorf("invalid match index - too few matches found")
|
||||
}
|
||||
|
||||
// FindAllMatches tries to find all matches of the regex represented by given start-state, with
|
||||
// the given string
|
||||
func FindAllMatches(regex Reg, str string) []Match {
|
||||
// FindAllSubmatch returns a slice of matches in the given string.
|
||||
func (re Reg) FindAllSubmatch(str string) []Match {
|
||||
idx := 0
|
||||
str_runes := []rune(str)
|
||||
var matchFound bool
|
||||
var matchIdx Match
|
||||
indices := make([]Match, 0)
|
||||
for idx <= len(str_runes) {
|
||||
matchFound, matchIdx, idx = findAllMatchesHelper(regex.start, str_runes, idx, regex.numGroups)
|
||||
matchFound, matchIdx, idx = findAllSubmatchHelper(re.start, str_runes, idx, re.numGroups, re.preferLongest)
|
||||
if matchFound {
|
||||
indices = append(indices, matchIdx)
|
||||
}
|
||||
}
|
||||
if len(indices) > 0 {
|
||||
return pruneIndices(indices)
|
||||
}
|
||||
|
||||
return indices
|
||||
}
|
||||
|
||||
func addStateToList(str []rune, idx int, list []nfaState, state nfaState, threadGroups []Group, visited []nfaState, preferLongest bool) []nfaState {
|
||||
if stateExists(list, state) || stateExists(visited, state) {
|
||||
return list
|
||||
}
|
||||
visited = append(visited, state)
|
||||
|
||||
if state.isKleene || state.isQuestion {
|
||||
copyThread(state.splitState, state)
|
||||
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited, preferLongest)
|
||||
copyThread(state.next, state)
|
||||
list = addStateToList(str, idx, list, *state.next, threadGroups, visited, preferLongest)
|
||||
return list
|
||||
}
|
||||
if state.isAlternation {
|
||||
copyThread(state.next, state)
|
||||
list = addStateToList(str, idx, list, *state.next, threadGroups, visited, preferLongest)
|
||||
copyThread(state.splitState, state)
|
||||
list = addStateToList(str, idx, list, *state.splitState, threadGroups, visited, preferLongest)
|
||||
return list
|
||||
}
|
||||
state.threadGroups = append([]Group{}, threadGroups...)
|
||||
if state.assert != noneAssert {
|
||||
if state.checkAssertion(str, idx, preferLongest) {
|
||||
copyThread(state.next, state)
|
||||
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited, preferLongest)
|
||||
}
|
||||
}
|
||||
if state.groupBegin {
|
||||
state.threadGroups[state.groupNum].StartIdx = idx
|
||||
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited, preferLongest)
|
||||
}
|
||||
if state.groupEnd {
|
||||
state.threadGroups[state.groupNum].EndIdx = idx
|
||||
return addStateToList(str, idx, list, *state.next, state.threadGroups, visited, preferLongest)
|
||||
}
|
||||
return append(list, state)
|
||||
|
||||
}
|
||||
|
||||
// Helper for FindAllMatches. Returns whether it found a match, the
|
||||
// first Match it finds, and how far it got into the string ie. where
|
||||
// the next search should start from.
|
||||
//
|
||||
// Might return duplicates or overlapping indices, so care must be taken to prune the resulting array.
|
||||
func findAllMatchesHelper(start *nfaState, str []rune, offset int, numGroups int) (bool, Match, int) {
|
||||
func findAllSubmatchHelper(start *nfaState, str []rune, offset int, numGroups int, preferLongest bool) (bool, Match, int) {
|
||||
// Base case - exit if offset exceeds string's length
|
||||
if offset > len(str) {
|
||||
// The second value here shouldn't be used, because we should exit when the third return value is > than len(str)
|
||||
return false, []Group{}, offset
|
||||
}
|
||||
resetThreads(start)
|
||||
|
||||
// Hold a list of match indices for the current run. When we
|
||||
// can no longer find a match, the match with the largest range is
|
||||
// chosen as the match for the entire string.
|
||||
// This allows us to pick the longest possible match (which is how greedy matching works).
|
||||
// COMMENT ABOVE IS CURRENTLY NOT UP-TO-DATE
|
||||
tempIndices := newMatch(numGroups + 1)
|
||||
|
||||
foundPath := false
|
||||
startIdx := offset
|
||||
endIdx := offset
|
||||
currentStates := make([]*nfaState, 0)
|
||||
tempStates := make([]*nfaState, 0) // Used to store states that should be used in next loop iteration
|
||||
i := offset // Index in string
|
||||
startingFrom := i // Store starting index
|
||||
currentStates := make([]nfaState, 0)
|
||||
nextStates := make([]nfaState, 0)
|
||||
i := offset // Index in string
|
||||
|
||||
// If the first state is an assertion, makes sure the assertion
|
||||
// is true before we do _anything_ else.
|
||||
if start.assert != noneAssert {
|
||||
if start.checkAssertion(str, offset) == false {
|
||||
if start.checkAssertion(str, offset, preferLongest) == false {
|
||||
i++
|
||||
return false, []Group{}, i
|
||||
}
|
||||
}
|
||||
// Increment until we hit a character matching the start state (assuming not 0-state)
|
||||
if start.isEmpty == false {
|
||||
for i < len(str) && !start.contentContains(str, i) {
|
||||
i++
|
||||
}
|
||||
startIdx = i
|
||||
startingFrom = i
|
||||
i++ // Advance to next character (if we aren't at a 0-state, which doesn't match anything), so that we can check for transitions. If we advance at a 0-state, we will never get a chance to match the first character
|
||||
}
|
||||
|
||||
start.threadGroups = newMatch(numGroups + 1)
|
||||
// Check if the start state begins a group - if so, add the start index to our list
|
||||
if start.groupBegin {
|
||||
start.threadGroups[start.groupNum].StartIdx = i
|
||||
// tempIndices[start.groupNum].startIdx = i
|
||||
}
|
||||
|
||||
currentStates = append(currentStates, start)
|
||||
|
||||
// Main loop
|
||||
for i < len(str) {
|
||||
foundPath = false
|
||||
|
||||
zeroStates := make([]*nfaState, 0)
|
||||
// Keep taking zero-states, until there are no more left to take
|
||||
// Objective: If any of our current states have transitions to 0-states, replace them with the 0-state. Do this until there are no more transitions to 0-states, or there are no more unique 0-states to take.
|
||||
zeroStates, isZero := takeZeroState(currentStates, numGroups, i)
|
||||
tempStates = append(tempStates, zeroStates...)
|
||||
num_appended := 0
|
||||
for isZero == true {
|
||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
tempStates, num_appended = unique_append(tempStates, zeroStates...)
|
||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
currentStates, _ = unique_append(currentStates, tempStates...)
|
||||
tempStates = nil
|
||||
|
||||
// Take any transitions corresponding to current character
|
||||
numStatesMatched := 0 // The number of states which had at least 1 match for this round
|
||||
assertionFailed := false // Whether or not an assertion failed for this round
|
||||
lastStateInList := false // Whether or not a last state was in our list of states
|
||||
var lastStatePtr *nfaState = nil // Pointer to the last-state, if it was found
|
||||
lastLookaroundInList := false // Whether or not a last state (that is a lookaround) was in our list of states
|
||||
for _, state := range currentStates {
|
||||
matches, numMatches := state.matchesFor(str, i)
|
||||
if numMatches > 0 {
|
||||
numStatesMatched++
|
||||
tempStates = append(tempStates, matches...)
|
||||
foundPath = true
|
||||
for _, m := range matches {
|
||||
if m.threadGroups == nil {
|
||||
m.threadGroups = newMatch(numGroups + 1)
|
||||
}
|
||||
copy(m.threadGroups, state.threadGroups)
|
||||
}
|
||||
}
|
||||
if numMatches < 0 {
|
||||
assertionFailed = true
|
||||
}
|
||||
if state.isLast {
|
||||
if state.isLookaround() {
|
||||
lastLookaroundInList = true
|
||||
}
|
||||
lastStateInList = true
|
||||
lastStatePtr = state
|
||||
}
|
||||
}
|
||||
|
||||
if assertionFailed && numStatesMatched == 0 { // Nothing has matched and an assertion has failed
|
||||
// If I'm being completely honest, I'm not sure why I have to check specifically for a _lookaround_
|
||||
// state. The explanation below is my attempt to explain this behavior.
|
||||
// If you replace 'lastLookaroundInList' with 'lastStateInList', one of the test cases fails.
|
||||
//
|
||||
// One of the states in our list was a last state and a lookaround. In this case, we
|
||||
// don't abort upon failure of the assertion, because we have found
|
||||
// another path to a final state.
|
||||
// Even if the last state _was_ an assertion, we can use the previously
|
||||
// saved indices to find a match.
|
||||
if lastLookaroundInList {
|
||||
break
|
||||
} else {
|
||||
if i == startingFrom {
|
||||
i++
|
||||
}
|
||||
return false, []Group{}, i
|
||||
}
|
||||
}
|
||||
// Check if we can find a state in our list that is:
|
||||
// a. A last-state
|
||||
// b. Empty
|
||||
// c. Doesn't assert anything
|
||||
for _, s := range currentStates {
|
||||
if s.isLast && s.isEmpty && s.assert == noneAssert {
|
||||
lastStatePtr = s
|
||||
lastStateInList = true
|
||||
}
|
||||
}
|
||||
if lastStateInList { // A last-state was in the list of states. add the matchIndex to our MatchIndex list
|
||||
for j := 1; j < numGroups+1; j++ {
|
||||
tempIndices[j] = lastStatePtr.threadGroups[j]
|
||||
}
|
||||
endIdx = i
|
||||
tempIndices[0] = Group{startIdx, endIdx}
|
||||
}
|
||||
|
||||
// Check if we can find a zero-length match
|
||||
if foundPath == false {
|
||||
if ok := zeroMatchPossible(str, i, numGroups, currentStates...); ok {
|
||||
if tempIndices[0].isValid() == false {
|
||||
tempIndices[0] = Group{startIdx, startIdx}
|
||||
}
|
||||
}
|
||||
// If we haven't moved in the string, increment the counter by 1
|
||||
// to ensure we don't keep trying the same string over and over.
|
||||
// if i == startingFrom {
|
||||
startIdx++
|
||||
// i++
|
||||
// }
|
||||
if tempIndices.numValidGroups() > 0 && tempIndices[0].isValid() {
|
||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
} else {
|
||||
return true, tempIndices, tempIndices[0].EndIdx
|
||||
}
|
||||
}
|
||||
return false, []Group{}, startIdx
|
||||
}
|
||||
currentStates = make([]*nfaState, len(tempStates))
|
||||
copy(currentStates, tempStates)
|
||||
tempStates = nil
|
||||
|
||||
i++
|
||||
}
|
||||
|
||||
// End-of-string reached. Go to any 0-states, until there are no more 0-states to go to. Then check if any of our states are in the end position.
|
||||
// This is the exact same algorithm used inside the loop, so I should probably put it in a function.
|
||||
zeroStates, isZero := takeZeroState(currentStates, numGroups, i)
|
||||
tempStates = append(tempStates, zeroStates...)
|
||||
num_appended := 0 // Number of unique states addded to tempStates
|
||||
for isZero == true {
|
||||
zeroStates, isZero = takeZeroState(tempStates, numGroups, i)
|
||||
tempStates, num_appended = unique_append(tempStates, zeroStates...)
|
||||
if num_appended == 0 { // Break if we haven't appended any more unique values
|
||||
start.threadGroups[0].StartIdx = i
|
||||
currentStates = addStateToList(str, i, currentStates, *start, start.threadGroups, nil, preferLongest)
|
||||
var match Match = nil
|
||||
for idx := i; idx <= len(str); idx++ {
|
||||
if len(currentStates) == 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
for currentStateIdx := 0; currentStateIdx < len(currentStates); currentStateIdx++ {
|
||||
currentState := currentStates[currentStateIdx]
|
||||
|
||||
currentStates = append(currentStates, tempStates...)
|
||||
tempStates = nil
|
||||
if currentState.threadGroups == nil {
|
||||
currentState.threadGroups = newMatch(numGroups + 1)
|
||||
currentState.threadGroups[0].StartIdx = idx
|
||||
}
|
||||
|
||||
for _, state := range currentStates {
|
||||
// Only add the match if the start index is in bounds. If the state has an assertion,
|
||||
// make sure the assertion checks out.
|
||||
if state.isLast && i <= len(str) {
|
||||
if state.assert == noneAssert || state.checkAssertion(str, i) {
|
||||
for j := 1; j < numGroups+1; j++ {
|
||||
tempIndices[j] = state.threadGroups[j]
|
||||
if currentState.isLast {
|
||||
currentState.threadGroups[0].EndIdx = idx
|
||||
match = append([]Group{}, currentState.threadGroups...)
|
||||
if !preferLongest {
|
||||
break
|
||||
}
|
||||
} else if !currentState.isAlternation && !currentState.isKleene && !currentState.isQuestion && !currentState.groupBegin && !currentState.groupEnd && currentState.assert == noneAssert { // Normal character
|
||||
if currentState.contentContains(str, idx, preferLongest) {
|
||||
nextStates = addStateToList(str, idx+1, nextStates, *currentState.next, currentState.threadGroups, nil, preferLongest)
|
||||
}
|
||||
endIdx = i
|
||||
tempIndices[0] = Group{startIdx, endIdx}
|
||||
}
|
||||
}
|
||||
currentStates = append([]nfaState{}, nextStates...)
|
||||
nextStates = nil
|
||||
}
|
||||
if match != nil {
|
||||
if offset == match[0].EndIdx {
|
||||
return true, match, match[0].EndIdx + 1
|
||||
}
|
||||
return true, match, match[0].EndIdx
|
||||
}
|
||||
return false, []Group{}, i + 1
|
||||
}
|
||||
|
||||
if tempIndices.numValidGroups() > 0 {
|
||||
if tempIndices[0].StartIdx == tempIndices[0].EndIdx { // If we have a zero-length match, we have to shift the index at which we start. Otherwise we keep looking at the same paert of the string over and over.
|
||||
return true, tempIndices, tempIndices[0].EndIdx + 1
|
||||
// Expand appends template to dst, expanding any variables in template to the relevant capturing group.
|
||||
//
|
||||
// A variable is of the form '$n', where 'n' is a number. It will be replaced by the contents of the n-th capturing group.
|
||||
// To insert a literal $, do not put a number after it. Alternatively, you can use $$.
|
||||
// src is the input string, and match must be the result of [Reg.FindSubmatch].
|
||||
func (re Reg) Expand(dst string, template string, src string, match Match) string {
|
||||
templateRuneSlc := []rune(template)
|
||||
srcRuneSlc := []rune(src)
|
||||
i := 0
|
||||
for i < len(templateRuneSlc) {
|
||||
c := templateRuneSlc[i]
|
||||
if c == '$' {
|
||||
i += 1
|
||||
// The dollar sign is the last character of the string, or it is proceeded by another dollar sign
|
||||
if i >= len(templateRuneSlc) || templateRuneSlc[i] == '$' {
|
||||
dst += "$"
|
||||
i++
|
||||
} else {
|
||||
numStr := ""
|
||||
for unicode.IsDigit(templateRuneSlc[i]) {
|
||||
numStr += string(templateRuneSlc[i])
|
||||
i++
|
||||
}
|
||||
if numStr == "" {
|
||||
dst += "$"
|
||||
} else {
|
||||
num, _ := strconv.Atoi(numStr)
|
||||
if num < len(match) {
|
||||
dst += string(srcRuneSlc[match[num].StartIdx:match[num].EndIdx])
|
||||
} else {
|
||||
dst += "$" + numStr
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return true, tempIndices, tempIndices[0].EndIdx
|
||||
dst += string(c)
|
||||
i++
|
||||
}
|
||||
}
|
||||
if startIdx == startingFrom { // Increment starting index if we haven't moved in the string. Prevents us from matching the same part of the string over and over.
|
||||
startIdx++
|
||||
}
|
||||
return false, []Group{}, startIdx
|
||||
return dst
|
||||
}
|
||||
|
||||
// LiteralPrefix returns a string that must begin any match of the given regular expression.
|
||||
// The second return value is true if the string comprises the entire expression.
|
||||
func (re Reg) LiteralPrefix() (prefix string, complete bool) {
|
||||
state := re.start
|
||||
if state.assert != noneAssert {
|
||||
state = state.next
|
||||
}
|
||||
for !(state.isLast) && (!state.isAlternation) && len(state.content) == 1 && state.assert == noneAssert {
|
||||
if state.groupBegin || state.groupEnd {
|
||||
state = state.next
|
||||
continue
|
||||
}
|
||||
prefix += string(rune(state.content[0]))
|
||||
state = state.next
|
||||
}
|
||||
if state.isLast {
|
||||
complete = true
|
||||
} else {
|
||||
complete = false
|
||||
}
|
||||
return prefix, complete
|
||||
}
|
||||
|
@@ -48,30 +48,6 @@ func isNormalChar(c rune) bool {
|
||||
return !slices.Contains(specialChars, c)
|
||||
}
|
||||
|
||||
// Ensure that the given elements are only appended to the given slice if they
|
||||
// don't already exist. Returns the new slice, and the number of unique items appended.
|
||||
func unique_append[T comparable](slc []T, items ...T) ([]T, int) {
|
||||
num_appended := 0
|
||||
for _, item := range items {
|
||||
if !slices.Contains(slc, item) {
|
||||
slc = append(slc, item)
|
||||
num_appended++
|
||||
}
|
||||
}
|
||||
return slc, num_appended
|
||||
}
|
||||
|
||||
// Returns true only if all the given elements are equal
|
||||
func allEqual[T comparable](items ...T) bool {
|
||||
first := items[0]
|
||||
for _, item := range items {
|
||||
if item != first {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Map function - convert a slice of T to a slice of V, based on a function
|
||||
// that maps a T to a V
|
||||
func funcMap[T, V any](slc []T, fn func(T) V) []V {
|
||||
|
344
regex/nfa.go
344
regex/nfa.go
@@ -25,21 +25,25 @@ const (
|
||||
)
|
||||
|
||||
type nfaState struct {
|
||||
content stateContents // Contents of current state
|
||||
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
|
||||
isLast bool // If it is the last state (acept state)
|
||||
output []*nfaState // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
|
||||
transitions map[int][]*nfaState // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
|
||||
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
|
||||
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
|
||||
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
|
||||
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
|
||||
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
|
||||
lookaroundNFA *nfaState // Holds the NFA of the lookaroundRegex - if it exists
|
||||
lookaroundNumCaptureGroups int // Number of capturing groups in lookaround regex if current node is a lookaround
|
||||
groupBegin bool // Whether or not the node starts a capturing group
|
||||
groupEnd bool // Whether or not the node ends a capturing group
|
||||
groupNum int // Which capturing group the node starts / ends
|
||||
content stateContents // Contents of current state
|
||||
isEmpty bool // If it is empty - Union operator and Kleene star states will be empty
|
||||
isLast bool // If it is the last state (acept state)
|
||||
output []*nfaState // The outputs of the current state ie. the 'outward arrows'. A union operator state will have more than one of these.
|
||||
// transitions map[int][]*nfaState // Transitions to different states (maps a character (int representation) to a _list of states. This is useful if one character can lead multiple states eg. ab|aa)
|
||||
next *nfaState // The next state (not for alternation or kleene states)
|
||||
isKleene bool // Identifies whether current node is a 0-state representing Kleene star
|
||||
isQuestion bool // Identifies whether current node is a 0-state representing the question operator
|
||||
isAlternation bool // Identifies whether current node is a 0-state representing an alternation
|
||||
splitState *nfaState // Only for alternation states - the 'other' branch of the alternation ('next' is the first)
|
||||
assert assertType // Type of assertion of current node - NONE means that the node doesn't assert anything
|
||||
allChars bool // Whether or not the state represents all characters (eg. a 'dot' metacharacter). A 'dot' node doesn't store any contents directly, as it would take up too much space
|
||||
except []rune // Only valid if allChars is true - match all characters _except_ the ones in this block. Useful for inverting character classes.
|
||||
lookaroundRegex string // Only for lookaround states - Contents of the regex that the lookaround state holds
|
||||
lookaroundNFA *nfaState // Holds the NFA of the lookaroundRegex - if it exists
|
||||
lookaroundNumCaptureGroups int // Number of capturing groups in lookaround regex if current node is a lookaround
|
||||
groupBegin bool // Whether or not the node starts a capturing group
|
||||
groupEnd bool // Whether or not the node ends a capturing group
|
||||
groupNum int // Which capturing group the node starts / ends
|
||||
// The following properties depend on the current match - I should think about resetting them for every match.
|
||||
zeroMatchFound bool // Whether or not the state has been used for a zero-length match - only relevant for zero states
|
||||
threadGroups []Group // Assuming that a state is part of a 'thread' in the matching process, this array stores the indices of capturing groups in the current thread. As matches are found for this state, its groups will be copied over.
|
||||
@@ -68,8 +72,9 @@ func cloneStateHelper(stateToClone *nfaState, cloneMap map[*nfaState]*nfaState)
|
||||
isEmpty: stateToClone.isEmpty,
|
||||
isLast: stateToClone.isLast,
|
||||
output: make([]*nfaState, len(stateToClone.output)),
|
||||
transitions: make(map[int][]*nfaState),
|
||||
isKleene: stateToClone.isKleene,
|
||||
isQuestion: stateToClone.isQuestion,
|
||||
isAlternation: stateToClone.isAlternation,
|
||||
assert: stateToClone.assert,
|
||||
zeroMatchFound: stateToClone.zeroMatchFound,
|
||||
allChars: stateToClone.allChars,
|
||||
@@ -87,26 +92,48 @@ func cloneStateHelper(stateToClone *nfaState, cloneMap map[*nfaState]*nfaState)
|
||||
clone.output[i] = cloneStateHelper(s, cloneMap)
|
||||
}
|
||||
}
|
||||
for k, v := range stateToClone.transitions {
|
||||
clone.transitions[k] = make([]*nfaState, len(v))
|
||||
for i, s := range v {
|
||||
if s == stateToClone {
|
||||
clone.transitions[k][i] = clone
|
||||
} else {
|
||||
clone.transitions[k][i] = cloneStateHelper(s, cloneMap)
|
||||
}
|
||||
}
|
||||
}
|
||||
if stateToClone.lookaroundNFA == stateToClone {
|
||||
clone.lookaroundNFA = clone
|
||||
}
|
||||
clone.lookaroundNFA = cloneStateHelper(stateToClone.lookaroundNFA, cloneMap)
|
||||
if stateToClone.splitState == stateToClone {
|
||||
clone.splitState = clone
|
||||
}
|
||||
clone.splitState = cloneStateHelper(stateToClone.splitState, cloneMap)
|
||||
if stateToClone.next == stateToClone {
|
||||
clone.next = clone
|
||||
}
|
||||
clone.next = cloneStateHelper(stateToClone.next, cloneMap)
|
||||
return clone
|
||||
}
|
||||
|
||||
// Reset any thread-related fields of the NFA starting from the given state.
|
||||
func resetThreads(start *nfaState) {
|
||||
visitedMap := make(map[*nfaState]bool) // The value type doesn't matter here
|
||||
resetThreadsHelper(start, visitedMap)
|
||||
}
|
||||
|
||||
func resetThreadsHelper(state *nfaState, visitedMap map[*nfaState]bool) {
|
||||
if state == nil {
|
||||
return
|
||||
}
|
||||
if _, ok := visitedMap[state]; ok {
|
||||
return
|
||||
}
|
||||
// Assuming it hasn't been visited
|
||||
state.threadGroups = nil
|
||||
visitedMap[state] = true
|
||||
if state.isAlternation {
|
||||
resetThreadsHelper(state.next, visitedMap)
|
||||
resetThreadsHelper(state.splitState, visitedMap)
|
||||
} else {
|
||||
resetThreadsHelper(state.next, visitedMap)
|
||||
}
|
||||
}
|
||||
|
||||
// Checks if the given state's assertion is true. Returns true if the given
|
||||
// state doesn't have an assertion.
|
||||
func (s nfaState) checkAssertion(str []rune, idx int) bool {
|
||||
func (s nfaState) checkAssertion(str []rune, idx int, preferLongest bool) bool {
|
||||
if s.assert == alwaysTrueAssert {
|
||||
return true
|
||||
}
|
||||
@@ -156,17 +183,18 @@ func (s nfaState) checkAssertion(str []rune, idx int) bool {
|
||||
strToMatch = string(runesToMatch)
|
||||
}
|
||||
|
||||
matchIndices := FindAllMatches(Reg{startState, s.lookaroundNumCaptureGroups}, strToMatch)
|
||||
regComp := Reg{startState, s.lookaroundNumCaptureGroups, s.lookaroundRegex, preferLongest}
|
||||
matchIndices := regComp.FindAll(strToMatch)
|
||||
|
||||
numMatchesFound := 0
|
||||
for _, matchIdx := range matchIndices {
|
||||
if s.assert == plaAssert || s.assert == nlaAssert { // Lookahead - return true (or false) if at least one match starts at 0. Zero is used because the test-string _starts_ from idx.
|
||||
if matchIdx[0].StartIdx == 0 {
|
||||
if matchIdx.StartIdx == 0 {
|
||||
numMatchesFound++
|
||||
}
|
||||
}
|
||||
if s.assert == plbAssert || s.assert == nlbAssert { // Lookbehind - return true (or false) if at least one match _ends_ at the current index.
|
||||
if matchIdx[0].EndIdx == idx {
|
||||
if matchIdx.EndIdx == idx {
|
||||
numMatchesFound++
|
||||
}
|
||||
}
|
||||
@@ -182,9 +210,12 @@ func (s nfaState) checkAssertion(str []rune, idx int) bool {
|
||||
}
|
||||
|
||||
// Returns true if the contents of 's' contain the value at the given index of the given string
|
||||
func (s nfaState) contentContains(str []rune, idx int) bool {
|
||||
func (s nfaState) contentContains(str []rune, idx int, preferLongest bool) bool {
|
||||
if s.assert != noneAssert {
|
||||
return s.checkAssertion(str, idx)
|
||||
return s.checkAssertion(str, idx, preferLongest)
|
||||
}
|
||||
if idx >= len(str) {
|
||||
return false
|
||||
}
|
||||
if s.allChars {
|
||||
return !slices.Contains(slices.Concat(notDotChars, s.except), str[idx]) // Return true only if the index isn't a 'notDotChar', or isn't one of the exception characters for the current node.
|
||||
@@ -197,74 +228,84 @@ func (s nfaState) isLookaround() bool {
|
||||
return s.assert == plaAssert || s.assert == plbAssert || s.assert == nlaAssert || s.assert == nlbAssert
|
||||
}
|
||||
|
||||
func (s nfaState) numTransitions() int {
|
||||
if s.next == nil && s.splitState == nil {
|
||||
return 0
|
||||
}
|
||||
if s.next == nil || s.splitState == nil {
|
||||
return 1
|
||||
}
|
||||
return 2
|
||||
}
|
||||
|
||||
// Returns the matches for the character at the given index of the given string.
|
||||
// Also returns the number of matches. Returns -1 if an assertion failed.
|
||||
func (s nfaState) matchesFor(str []rune, idx int) ([]*nfaState, int) {
|
||||
// Assertions can be viewed as 'checks'. If the check fails, we return
|
||||
// an empty array and 0.
|
||||
// If it passes, we treat it like any other state, and return all the transitions.
|
||||
if s.assert != noneAssert {
|
||||
if s.checkAssertion(str, idx) == false {
|
||||
return make([]*nfaState, 0), -1
|
||||
}
|
||||
}
|
||||
listTransitions := s.transitions[int(str[idx])]
|
||||
for _, dest := range s.transitions[int(anyCharRune)] {
|
||||
if !slices.Contains(slices.Concat(notDotChars, dest.except), str[idx]) {
|
||||
// Add an allChar state to the list of matches if:
|
||||
// a. The current character isn't a 'notDotChars' character. In single line mode, this includes newline. In multiline mode, it doesn't.
|
||||
// b. The current character isn't the state's exception list.
|
||||
listTransitions = append(listTransitions, dest)
|
||||
}
|
||||
}
|
||||
numTransitions := len(listTransitions)
|
||||
return listTransitions, numTransitions
|
||||
}
|
||||
//func (s nfaState) matchesFor(str []rune, idx int) ([]*nfaState, int) {
|
||||
// // Assertions can be viewed as 'checks'. If the check fails, we return
|
||||
// // an empty array and 0.
|
||||
// // If it passes, we treat it like any other state, and return all the transitions.
|
||||
// if s.assert != noneAssert {
|
||||
// if s.checkAssertion(str, idx) == false {
|
||||
// return make([]*nfaState, 0), -1
|
||||
// }
|
||||
// }
|
||||
// listTransitions := s.transitions[int(str[idx])]
|
||||
// for _, dest := range s.transitions[int(anyCharRune)] {
|
||||
// if !slices.Contains(slices.Concat(notDotChars, dest.except), str[idx]) {
|
||||
// // Add an allChar state to the list of matches if:
|
||||
// // a. The current character isn't a 'notDotChars' character. In single line mode, this includes newline. In multiline mode, it doesn't.
|
||||
// // b. The current character isn't the state's exception list.
|
||||
// listTransitions = append(listTransitions, dest)
|
||||
// }
|
||||
// }
|
||||
// numTransitions := len(listTransitions)
|
||||
// return listTransitions, numTransitions
|
||||
//}
|
||||
|
||||
// verifyLastStatesHelper performs the depth-first recursion needed for verifyLastStates
|
||||
func verifyLastStatesHelper(st *nfaState, visited map[*nfaState]bool) {
|
||||
if len(st.transitions) == 0 {
|
||||
st.isLast = true
|
||||
return
|
||||
}
|
||||
// if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a*
|
||||
if len(st.transitions) == 1 { // Eg. a*
|
||||
var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one
|
||||
for _, c := range st.content {
|
||||
if len(st.transitions[c]) != 1 || st.transitions[c][0] != st {
|
||||
moreThanOneTrans = true
|
||||
}
|
||||
}
|
||||
st.isLast = !moreThanOneTrans
|
||||
}
|
||||
|
||||
if st.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
|
||||
transitionDests := make([]*nfaState, 0)
|
||||
for _, v := range st.transitions {
|
||||
transitionDests = append(transitionDests, v...)
|
||||
}
|
||||
if allEqual(transitionDests...) {
|
||||
st.isLast = true
|
||||
return
|
||||
}
|
||||
}
|
||||
if visited[st] == true {
|
||||
return
|
||||
}
|
||||
visited[st] = true
|
||||
for _, states := range st.transitions {
|
||||
for i := range states {
|
||||
if states[i] != st {
|
||||
verifyLastStatesHelper(states[i], visited)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//func verifyLastStatesHelper(st *nfaState, visited map[*nfaState]bool) {
|
||||
// if st.numTransitions() == 0 {
|
||||
// st.isLast = true
|
||||
// return
|
||||
// }
|
||||
// // if len(state.transitions) == 1 && len(state.transitions[state.content]) == 1 && state.transitions[state.content][0] == state { // Eg. a*
|
||||
// if st.numTransitions() == 1 { // Eg. a*
|
||||
// var moreThanOneTrans bool // Dummy variable, check if all the transitions for the current's state's contents have a length of one
|
||||
// for _, c := range st.content {
|
||||
// if len(st.transitions[c]) != 1 || st.transitions[c][0] != st {
|
||||
// moreThanOneTrans = true
|
||||
// }
|
||||
// }
|
||||
// st.isLast = !moreThanOneTrans
|
||||
// }
|
||||
//
|
||||
// if st.isKleene { // A State representing a Kleene Star has transitions going out, which loop back to it. If all those transitions point to the same (single) state, then it must be a last state
|
||||
// transitionDests := make([]*nfaState, 0)
|
||||
// for _, v := range st.transitions {
|
||||
// transitionDests = append(transitionDests, v...)
|
||||
// }
|
||||
// if allEqual(transitionDests...) {
|
||||
// st.isLast = true
|
||||
// return
|
||||
// }
|
||||
// }
|
||||
// if visited[st] == true {
|
||||
// return
|
||||
// }
|
||||
// visited[st] = true
|
||||
// for _, states := range st.transitions {
|
||||
// for i := range states {
|
||||
// if states[i] != st {
|
||||
// verifyLastStatesHelper(states[i], visited)
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
// verifyLastStates enables the 'isLast' flag for the leaf nodes (last states)
|
||||
func verifyLastStates(start []*nfaState) {
|
||||
verifyLastStatesHelper(start[0], make(map[*nfaState]bool))
|
||||
}
|
||||
//func verifyLastStates(start []*nfaState) {
|
||||
// verifyLastStatesHelper(start[0], make(map[*nfaState]bool))
|
||||
//}
|
||||
|
||||
// Concatenates s1 and s2, returns the start of the concatenation.
|
||||
func concatenate(s1 *nfaState, s2 *nfaState) *nfaState {
|
||||
@@ -272,73 +313,84 @@ func concatenate(s1 *nfaState, s2 *nfaState) *nfaState {
|
||||
return s2
|
||||
}
|
||||
for i := range s1.output {
|
||||
for _, c := range s2.content { // Create transitions for every element in s1's content to s2'
|
||||
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], s2)
|
||||
}
|
||||
s1.output[i].next = s2
|
||||
}
|
||||
s1.output = s2.output
|
||||
return s1
|
||||
}
|
||||
|
||||
func kleene(s1 nfaState) (*nfaState, error) {
|
||||
func kleene(s1 *nfaState) (*nfaState, error) {
|
||||
if s1.isEmpty && s1.assert != noneAssert {
|
||||
return nil, fmt.Errorf("previous token is not quantifiable")
|
||||
}
|
||||
|
||||
toReturn := &nfaState{}
|
||||
toReturn.transitions = make(map[int][]*nfaState)
|
||||
toReturn.content = newContents(epsilon)
|
||||
toReturn.isEmpty = true
|
||||
toReturn.isAlternation = true
|
||||
toReturn.content = newContents(epsilon)
|
||||
toReturn.splitState = s1
|
||||
|
||||
// toReturn := &nfaState{}
|
||||
// toReturn.transitions = make(map[int][]*nfaState)
|
||||
// toReturn.content = newContents(epsilon)
|
||||
toReturn.isKleene = true
|
||||
toReturn.output = append(toReturn.output, toReturn)
|
||||
toReturn.output = append([]*nfaState{}, toReturn)
|
||||
for i := range s1.output {
|
||||
for _, c := range toReturn.content {
|
||||
s1.output[i].transitions[c], _ = unique_append(s1.output[i].transitions[c], toReturn)
|
||||
}
|
||||
}
|
||||
for _, c := range s1.content {
|
||||
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], &s1)
|
||||
s1.output[i].next = toReturn
|
||||
}
|
||||
// for _, c := range s1.content {
|
||||
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], &s1)
|
||||
// }
|
||||
//toReturn.kleeneState = &s1
|
||||
return toReturn, nil
|
||||
}
|
||||
|
||||
func alternate(s1 *nfaState, s2 *nfaState) *nfaState {
|
||||
toReturn := &nfaState{}
|
||||
toReturn.transitions = make(map[int][]*nfaState)
|
||||
// toReturn.transitions = make(map[int][]*nfaState)
|
||||
toReturn.output = append(toReturn.output, s1.output...)
|
||||
toReturn.output = append(toReturn.output, s2.output...)
|
||||
// Unique append is used here (and elsewhere) to ensure that,
|
||||
// for any given transition, a state can only be mentioned once.
|
||||
// For example, given the transition 'a', the state 's1' can only be mentioned once.
|
||||
// This would lead to multiple instances of the same set of match indices, since both
|
||||
// 's1' states would be considered to match.
|
||||
for _, c := range s1.content {
|
||||
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s1)
|
||||
}
|
||||
for _, c := range s2.content {
|
||||
toReturn.transitions[c], _ = unique_append(toReturn.transitions[c], s2)
|
||||
}
|
||||
// // Unique append is used here (and elsewhere) to ensure that,
|
||||
// // for any given transition, a state can only be mentioned once.
|
||||
// // For example, given the transition 'a', the state 's1' can only be mentioned once.
|
||||
// // This would lead to multiple instances of the same set of match indices, since both
|
||||
// // 's1' states would be considered to match.
|
||||
// for _, c := range s1.content {
|
||||
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], s1)
|
||||
// }
|
||||
// for _, c := range s2.content {
|
||||
// toReturn.transitions[c], _ = uniqueAppend(toReturn.transitions[c], s2)
|
||||
// }
|
||||
toReturn.content = newContents(epsilon)
|
||||
toReturn.isEmpty = true
|
||||
toReturn.isAlternation = true
|
||||
toReturn.next = s1
|
||||
toReturn.splitState = s2
|
||||
|
||||
return toReturn
|
||||
}
|
||||
|
||||
func question(s1 *nfaState) *nfaState { // Use the fact that ab? == a(b|)
|
||||
s2 := &nfaState{}
|
||||
s2.transitions = make(map[int][]*nfaState)
|
||||
s2.content = newContents(epsilon)
|
||||
s2.output = append(s2.output, s2)
|
||||
s2.isEmpty = true
|
||||
s3 := alternate(s1, s2)
|
||||
return s3
|
||||
func question(s1 *nfaState) (*nfaState, error) { // Use the fact that ab? == a(b|)
|
||||
if s1.isEmpty && s1.assert != noneAssert {
|
||||
return nil, fmt.Errorf("previous token is not quantifiable")
|
||||
}
|
||||
toReturn := &nfaState{}
|
||||
toReturn.isEmpty = true
|
||||
toReturn.isAlternation = true
|
||||
toReturn.isQuestion = true
|
||||
toReturn.content = newContents(epsilon)
|
||||
toReturn.splitState = s1
|
||||
toReturn.output = append([]*nfaState{}, toReturn)
|
||||
toReturn.output = append(toReturn.output, s1.output...)
|
||||
// s2.transitions = make(map[int][]*nfaState)
|
||||
return toReturn, nil
|
||||
}
|
||||
|
||||
// Creates and returns a new state with the 'default' values.
|
||||
func newState() nfaState {
|
||||
ret := nfaState{
|
||||
output: make([]*nfaState, 0),
|
||||
transitions: make(map[int][]*nfaState),
|
||||
output: make([]*nfaState, 0),
|
||||
// transitions: make(map[int][]*nfaState),
|
||||
assert: noneAssert,
|
||||
except: append([]rune{}, 0),
|
||||
lookaroundRegex: "",
|
||||
@@ -350,10 +402,40 @@ func newState() nfaState {
|
||||
}
|
||||
|
||||
// Creates and returns a state that _always_ has a zero-length match.
|
||||
func zeroLengthMatchState() nfaState {
|
||||
start := newState()
|
||||
func zeroLengthMatchState() *nfaState {
|
||||
start := &nfaState{}
|
||||
start.content = newContents(epsilon)
|
||||
start.isEmpty = true
|
||||
start.assert = alwaysTrueAssert
|
||||
start.output = append([]*nfaState{}, start)
|
||||
return start
|
||||
}
|
||||
|
||||
func (s nfaState) equals(other nfaState) bool {
|
||||
return s.isEmpty == other.isEmpty &&
|
||||
s.isLast == other.isLast &&
|
||||
slices.Equal(s.output, other.output) &&
|
||||
slices.Equal(s.content, other.content) &&
|
||||
s.next == other.next &&
|
||||
s.isKleene == other.isKleene &&
|
||||
s.isQuestion == other.isQuestion &&
|
||||
s.isAlternation == other.isAlternation &&
|
||||
s.splitState == other.splitState &&
|
||||
s.assert == other.assert &&
|
||||
s.allChars == other.allChars &&
|
||||
slices.Equal(s.except, other.except) &&
|
||||
s.lookaroundNFA == other.lookaroundNFA &&
|
||||
s.groupBegin == other.groupBegin &&
|
||||
s.groupEnd == other.groupEnd &&
|
||||
s.groupNum == other.groupNum &&
|
||||
slices.Equal(s.threadGroups, other.threadGroups)
|
||||
}
|
||||
|
||||
func stateExists(list []nfaState, s nfaState) bool {
|
||||
for i := range list {
|
||||
if list[i].equals(s) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
@@ -3,7 +3,9 @@ package regex
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type numRange struct {
|
||||
@@ -99,28 +101,39 @@ func range2regex(start int, end int) (string, error) {
|
||||
// Last range - tmp to rangeEnd
|
||||
ranges = append(ranges, numRange{tmp, rangeEnd})
|
||||
|
||||
regex := string(nonCapLparenRune)
|
||||
regexSlice := make([]string, 0)
|
||||
// Generate the regex
|
||||
for i, rg := range ranges {
|
||||
if i > 0 {
|
||||
regex += "|"
|
||||
}
|
||||
regex += string(nonCapLparenRune)
|
||||
for _, rg := range ranges {
|
||||
tmpStr := ""
|
||||
tmpStr += string(nonCapLparenRune)
|
||||
startSlc := intToSlc(rg.start)
|
||||
endSlc := intToSlc(rg.end)
|
||||
if len(startSlc) != len(endSlc) {
|
||||
return "", fmt.Errorf("Error parsing numeric range")
|
||||
return "", fmt.Errorf("error parsing numeric range")
|
||||
}
|
||||
for i := range startSlc {
|
||||
if startSlc[i] == endSlc[i] {
|
||||
regex += string(rune(startSlc[i] + 48)) // '0' is ascii value 48, 1 is 49 etc. To convert the digit to its character form, we can just add 48.
|
||||
tmpStr += string(rune(startSlc[i] + 48)) // '0' is ascii value 48, 1 is 49 etc. To convert the digit to its character form, we can just add 48.
|
||||
} else {
|
||||
regex += fmt.Sprintf("%c%c-%c%c", lbracketRune, rune(startSlc[i]+48), rune(endSlc[i]+48), rbracketRune)
|
||||
tmpStr += fmt.Sprintf("%c%c-%c%c", lbracketRune, rune(startSlc[i]+48), rune(endSlc[i]+48), rbracketRune)
|
||||
}
|
||||
}
|
||||
regex += ")"
|
||||
tmpStr += ")"
|
||||
regexSlice = append(regexSlice, tmpStr)
|
||||
}
|
||||
regex += ")"
|
||||
// Each element of the slice represents one 'group'. Taking 0-255 as an example, the elements would be:
|
||||
// 1. 0-9
|
||||
// 2. 10-99
|
||||
// 3. 100-199
|
||||
// 4. 200-249
|
||||
// 5. 250-255
|
||||
//
|
||||
// The reason this is reversed before joining it, is because it is incompatible with the PCRE rule for matching.
|
||||
// The PCRE rule specifies that the left-branch of an alternation is preferred. Even though this engine uses the POSIX
|
||||
// rule at the moment (which prefers the longest match regardless of the order of the alternation), reversing the string
|
||||
// has no downsides. It doesn't affect POSIX matching, and it will reduce my burden if I decide to switch to PCRE matching.
|
||||
slices.Reverse(regexSlice)
|
||||
regex := string(nonCapLparenRune) + strings.Join(regexSlice, "|") + ")"
|
||||
return regex, nil
|
||||
|
||||
}
|
||||
|
183
regex/re_test.go
183
regex/re_test.go
@@ -25,7 +25,9 @@ var reTests = []struct {
|
||||
{"a*b", nil, "qwqw", []Group{}},
|
||||
{"(abc)*", nil, "abcabcabc", []Group{{0, 9}, {9, 9}}},
|
||||
{"((abc)|(def))*", nil, "abcdef", []Group{{0, 6}, {6, 6}}},
|
||||
{"(abc)*|(def)*", nil, "abcdef", []Group{{0, 3}, {3, 6}, {6, 6}}},
|
||||
// This match will only happen with Longest()
|
||||
// {"(abc)*|(def)*", nil, "abcdef", []Group{{0, 3}, {3, 6}, {6, 6}}},
|
||||
{"(abc)*|(def)*", nil, "abcdef", []Group{{0, 3}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}},
|
||||
{"b*a*a", nil, "bba", []Group{{0, 3}}},
|
||||
{"(ab)+", nil, "abcabddd", []Group{{0, 2}, {3, 5}}},
|
||||
{"a(b(c|d)*)*", nil, "abccbd", []Group{{0, 6}}},
|
||||
@@ -105,6 +107,9 @@ var reTests = []struct {
|
||||
{"(a|b){3,4}", nil, "ababaa", []Group{{0, 4}}},
|
||||
{"(bc){5,}", nil, "bcbcbcbcbcbcbcbc", []Group{{0, 16}}},
|
||||
{`\d{3,4}`, nil, "1209", []Group{{0, 4}}},
|
||||
{`\d{3,4}`, nil, "120", []Group{{0, 3}}},
|
||||
{`\d{3,4}`, nil, "12709", []Group{{0, 4}}},
|
||||
{`\d{3,4}`, nil, "12", []Group{}},
|
||||
{`\d{3,4}`, nil, "109", []Group{{0, 3}}},
|
||||
{`\d{3,4}`, nil, "5", []Group{}},
|
||||
{`\d{3,4}`, nil, "123135", []Group{{0, 4}}},
|
||||
@@ -525,7 +530,7 @@ var groupTests = []struct {
|
||||
}{
|
||||
{"(a)(b)", nil, "ab", []Match{[]Group{{0, 2}, {0, 1}, {1, 2}}}},
|
||||
{"((a))(b)", nil, "ab", []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {1, 2}}}},
|
||||
{"(0)", nil, "ab", []Match{[]Group{}}},
|
||||
{"(0)", nil, "ab", []Match{}},
|
||||
{"(a)b", nil, "ab", []Match{[]Group{{0, 2}, {0, 1}}}},
|
||||
{"a(b)", nil, "ab", []Match{[]Group{{0, 2}, {1, 2}}}},
|
||||
{"(a|b)", nil, "ab", []Match{[]Group{{0, 1}, {0, 1}}, []Group{{1, 2}, {1, 2}}}},
|
||||
@@ -534,10 +539,11 @@ var groupTests = []struct {
|
||||
{"(a+)|(a)", nil, "aaaa", []Match{[]Group{{0, 4}, {0, 4}, {-1, -1}}}},
|
||||
{"(a+)(aa)", nil, "aaaa", []Match{[]Group{{0, 4}, {0, 2}, {2, 4}}}},
|
||||
{"(aaaa)|(aaaa)", nil, "aaaa", []Match{[]Group{{0, 4}, {0, 4}, {-1, -1}}}},
|
||||
{"(aaa)|(aaaa)", nil, "aaaa", []Match{[]Group{{0, 4}, {-1, -1}, {0, 4}}}},
|
||||
{"(aaa)|(aaaa)", nil, "aaaa", []Match{[]Group{{0, 4}, {-1, -1}, {0, 4}}}},
|
||||
// This match will only happen with Longest()
|
||||
// {"(aaa)|(aaaa)", nil, "aaaa", []Match{[]Group{{0, 4}, {-1, -1}, {0, 4}}}},
|
||||
{"(aaa)|(aaaa)", nil, "aaaa", []Match{[]Group{{0, 3}, {0, 3}, {-1, -1}}}},
|
||||
{"(aaaa)|(aaa)", nil, "aaaa", []Match{[]Group{{0, 4}, {0, 4}, {-1, -1}}}},
|
||||
{"(a)|(aa)", nil, "aa", []Match{[]Group{{0, 2}, {-1, -1}, {0, 2}}}},
|
||||
{"(a)|(aa)", nil, "aa", []Match{[]Group{{0, 1}, {0, 1}}, []Group{{1, 2}, {1, 2}}}},
|
||||
{"(a?)a?", nil, "b", []Match{[]Group{{0, 0}, {0, 0}}, []Group{{1, 1}, {1, 1}}}},
|
||||
{"(a?)a?", nil, "ab", []Match{[]Group{{0, 1}, {0, 1}}, []Group{{1, 1}, {1, 1}}, []Group{{2, 2}, {2, 2}}}},
|
||||
{"(a?)a?", nil, "aa", []Match{[]Group{{0, 2}, {0, 1}}, []Group{{2, 2}, {2, 2}}}},
|
||||
@@ -575,7 +581,7 @@ var groupTests = []struct {
|
||||
{`(bc+d$|ef*g.|h?i(j|k))`, nil, `bcdd`, []Match{}},
|
||||
{`(bc+d$|ef*g.|h?i(j|k))`, nil, `reffgz`, []Match{[]Group{{1, 6}, {1, 6}}}},
|
||||
{`(((((((((a)))))))))`, nil, `a`, []Match{[]Group{{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(((((((((a)))))))))\41`, nil, `a`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(((((((((a)))))))))\41`, nil, `a!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(.*)c(.*)`, nil, `abcde`, []Match{[]Group{{0, 5}, {0, 2}, {3, 5}}}},
|
||||
{`\((.*), (.*)\)`, nil, `(a, b)`, []Match{[]Group{{0, 6}, {1, 2}, {4, 5}}}},
|
||||
|
||||
@@ -630,7 +636,7 @@ var groupTests = []struct {
|
||||
{`(bc+d$|ef*g.|h?i(j|k))`, []ReFlag{RE_CASE_INSENSITIVE}, `BCDD`, []Match{}},
|
||||
{`(bc+d$|ef*g.|h?i(j|k))`, []ReFlag{RE_CASE_INSENSITIVE}, `reffgz`, []Match{[]Group{{1, 6}, {1, 6}}}},
|
||||
{`(((((((((a)))))))))`, []ReFlag{RE_CASE_INSENSITIVE}, `A`, []Match{[]Group{{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(((((((((a)))))))))\41`, []ReFlag{RE_CASE_INSENSITIVE}, `A`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(((((((((a)))))))))\41`, []ReFlag{RE_CASE_INSENSITIVE}, `A!`, []Match{[]Group{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}}},
|
||||
{`(.*)c(.*)`, []ReFlag{RE_CASE_INSENSITIVE}, `ABCDE`, []Match{[]Group{{0, 5}, {0, 2}, {3, 5}}}},
|
||||
{`\((.*), (.*)\)`, []ReFlag{RE_CASE_INSENSITIVE}, `(A, B)`, []Match{[]Group{{0, 6}, {1, 2}, {4, 5}}}},
|
||||
{`(a)(b)c|ab`, []ReFlag{RE_CASE_INSENSITIVE}, `AB`, []Match{[]Group{{0, 2}}}},
|
||||
@@ -671,9 +677,20 @@ var groupTests = []struct {
|
||||
{`^([ab]*)(?<!(a))c`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 2}}}},
|
||||
|
||||
{`(<389-400>)`, nil, `391`, []Match{[]Group{{0, 3}, {0, 3}}}},
|
||||
|
||||
// // Tests from https://wiki.haskell.org/Regex_Posix
|
||||
// {`(()|.)(b)`, nil, `ab`, []Match{[]Group{{0, 2}, {0, 1}, {-1, -1}, {1, 2}}}},
|
||||
// {`(()|[ab])(b)`, nil, `ab`, []Match{[]Group{{0, 2}, {0, 1}, {-1, -1}, {1, 2}}}},
|
||||
// {`(()|[ab])+b`, nil, `aaab`, []Match{[]Group{{0, 4}, {2, 3}, {-1, -1}}}},
|
||||
// {`([ab]|())+b`, nil, `aaab`, []Match{[]Group{{0, 4}, {2, 3}, {-1, -1}}}},
|
||||
// // Bug - this should give {0,6},{3,6},{-1,-1} but it gives {0,6},{3,6},{3,3}
|
||||
// // {`yyyyyy`, nil, `(yyy|(x?)){2,4}`, []Match{[]Group{{0, 6}, {3, 6}, {-1, -1}}, []Group{{6, 6}, {6, 6}, {6, 6}}}},
|
||||
// {`(a|ab|c|bcd)*(d*)`, nil, `ababcd`, []Match{[]Group{{0, 6}, {3, 6}, {6, 6}}, []Group{{6, 6}, {6, 6}, {6, 6}}}},
|
||||
// // Bug - this should give {0,3},{0,3},{0,0},{0,3},{3,3} but it gives {0,3},{0,2},{0,1},{1,2},{2,3}
|
||||
// // {`((a*)(b|abc))(c*)`, nil, `abc`, []Match{[]Group{{0, 3}, {0, 3}, {0, 0}, {0, 3}, {3, 3}}}},
|
||||
}
|
||||
|
||||
func TestFindAllMatches(t *testing.T) {
|
||||
func TestFind(t *testing.T) {
|
||||
for _, test := range reTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
@@ -682,13 +699,35 @@ func TestFindAllMatches(t *testing.T) {
|
||||
panic(fmt.Errorf("Test Error: %v", err))
|
||||
}
|
||||
} else {
|
||||
matchIndices := FindAllMatches(regComp, test.str)
|
||||
zeroGroups := make([]Group, len(matchIndices))
|
||||
for i, m := range matchIndices {
|
||||
zeroGroups[i] = m[0]
|
||||
groupIndex, err := regComp.Find(test.str)
|
||||
if err != nil { // No matches found
|
||||
if len(test.result) == 0 {
|
||||
return // Manually pass the test, because this is the expected behavior
|
||||
} else {
|
||||
t.Errorf("Wanted %v Got no matches\n", test.result)
|
||||
}
|
||||
} else {
|
||||
if groupIndex != test.result[0] {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result, groupIndex)
|
||||
}
|
||||
}
|
||||
if !slices.Equal(test.result, zeroGroups) {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result, zeroGroups)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestFindAll(t *testing.T) {
|
||||
for _, test := range reTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
if err != nil {
|
||||
if test.result != nil {
|
||||
panic(fmt.Errorf("Test Error: %v", err))
|
||||
}
|
||||
} else {
|
||||
matchIndices := regComp.FindAll(test.str)
|
||||
if !slices.Equal(test.result, matchIndices) {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
|
||||
}
|
||||
}
|
||||
})
|
||||
@@ -704,10 +743,10 @@ func TestFindString(t *testing.T) {
|
||||
panic(err)
|
||||
}
|
||||
} else {
|
||||
foundString := FindString(regComp, test.str)
|
||||
foundString := regComp.FindString(test.str)
|
||||
if len(test.result) == 0 {
|
||||
if foundString != "" {
|
||||
t.Errorf("Expected no match got %v\n", foundString)
|
||||
t.Errorf("Wanted no match got %v\n", foundString)
|
||||
}
|
||||
} else {
|
||||
expectedString := test.str[test.result[0].StartIdx:test.result[0].EndIdx]
|
||||
@@ -720,7 +759,32 @@ func TestFindString(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestFindAllGroups(t *testing.T) {
|
||||
func TestFindAllString(t *testing.T) {
|
||||
for _, test := range reTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
if err != nil {
|
||||
if test.result != nil {
|
||||
panic(err)
|
||||
}
|
||||
} else {
|
||||
foundStrings := regComp.FindAllString(test.str)
|
||||
if len(test.result) != len(foundStrings) {
|
||||
t.Errorf("Differing number of matches: Wanted %v matches Got %v matches\n", len(test.result), len(foundStrings))
|
||||
} else {
|
||||
for idx, group := range test.result {
|
||||
groupStr := test.str[group.StartIdx:group.EndIdx]
|
||||
if groupStr != foundStrings[idx] {
|
||||
t.Errorf("Wanted %v Got %v\n", groupStr, foundStrings[idx])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestFindSubmatch(t *testing.T) {
|
||||
for _, test := range groupTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
@@ -729,13 +793,94 @@ func TestFindAllGroups(t *testing.T) {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
matchIndices := FindAllMatches(regComp, test.str)
|
||||
match, err := regComp.FindSubmatch(test.str)
|
||||
if err != nil {
|
||||
if len(test.result) != 0 {
|
||||
t.Errorf("Wanted %v got no match\n", test.result[0])
|
||||
}
|
||||
} else if len(test.result) == 0 {
|
||||
t.Errorf("Wanted no match got %v\n", match)
|
||||
}
|
||||
for i := range match {
|
||||
if match[i].IsValid() {
|
||||
if test.result[0][i] != match[i] {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
|
||||
}
|
||||
} else {
|
||||
if i < len(test.result) && test.result[0][i].IsValid() {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result[0], match)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
func TestFindStringSubmatch(t *testing.T) {
|
||||
for _, test := range groupTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
if err != nil {
|
||||
if test.result != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
matchStr := regComp.FindStringSubmatch(test.str)
|
||||
if matchStr == nil {
|
||||
if len(test.result) != 0 {
|
||||
expectedStr := funcMap(test.result[0], func(g Group) string {
|
||||
if g.IsValid() {
|
||||
return test.str[g.StartIdx:g.EndIdx]
|
||||
} else {
|
||||
return ""
|
||||
}
|
||||
})
|
||||
t.Errorf("Wanted %v got no match\n", expectedStr)
|
||||
}
|
||||
} else if len(test.result) == 0 {
|
||||
t.Errorf("Wanted no match got %v\n", matchStr)
|
||||
} else {
|
||||
expectedStr := funcMap(test.result[0], func(g Group) string {
|
||||
if g.IsValid() {
|
||||
return test.str[g.StartIdx:g.EndIdx]
|
||||
} else {
|
||||
return ""
|
||||
}
|
||||
})
|
||||
for i, groupStr := range matchStr {
|
||||
if groupStr == "" {
|
||||
if i < len(expectedStr) && expectedStr[i] != "" {
|
||||
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
|
||||
}
|
||||
} else {
|
||||
if expectedStr[i] != groupStr {
|
||||
t.Errorf("Wanted %v Got %v\n", expectedStr, matchStr)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
func TestFindAllSubmatch(t *testing.T) {
|
||||
for _, test := range groupTests {
|
||||
t.Run(test.re+" "+test.str, func(t *testing.T) {
|
||||
regComp, err := Compile(test.re, test.flags...)
|
||||
if err != nil {
|
||||
if test.result != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
matchIndices := regComp.FindAllSubmatch(test.str)
|
||||
for i := range matchIndices {
|
||||
for j := range matchIndices[i] {
|
||||
if matchIndices[i][j].isValid() {
|
||||
if matchIndices[i][j].IsValid() {
|
||||
if test.result[i][j] != matchIndices[i][j] {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
|
||||
}
|
||||
} else {
|
||||
if i < len(test.result) && j < len(test.result[i]) && test.result[i][j].IsValid() {
|
||||
t.Errorf("Wanted %v Got %v\n", test.result, matchIndices)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user